Skip to main content
Log in

A Review on Waste Glass-based Geopolymer Composites as a Sustainable Binder

  • Review
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Waste glass (WG) is one of the major constituents of municipal solid waste, rich in amorphous silica.. The present article comprehensively reviews the geopolymer materials synthesized with waste glass powder (WGP) as one of the precursors. The fresh, hardened and durability properties of the material are appraised, emphasizing the effect of synthesis parameters. The embodied energy and the embodied CO2 in WGP-based geopolymer are presented to highlight its sustainability. The workability and setting times of the geopolymer are highly influenced by the surface properties of the glass particle. A certain dosage of WGP significantly improves the mechanical and durability properties of the geopolymer. Further, other synthesis parameters such as the type of co-precursor, the particle size of WGP, the type of alkali activator and its concentration, and the liquid activator to solid binder ratio also cause predominant changes in the material properties. Durability studies on WGP-based geopolymers are limited, particularly the quantification of alkali-silica reactions and resistance towards chemical attacks. In addition, advanced sustainable studies are essential for promoting WGP-based geopolymer as a sustainable material. Overall, previous studies indicate the effective incorporation of WGP as a precursor material because of its relatively better performance than other cementitious materials. This review gives the researchers and field engineers a better understanding of utilizing WGP as a precursor in the synthesis of geopolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the present study.

References

  1. Jiang X, Xiao R, Ma Y et al (2020) Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures. Constr Build Mater 262:120579. https://doi.org/10.1016/j.conbuildmat.2020.120579

    Article  CAS  Google Scholar 

  2. Garside M (2021) Glass containers and bottles global production volume 2020 & 2026. In: Statista. https://www.statista.com/statistics/700260/glass-bottles-and-containers-production-volume-worldwide. Accessed 5 Mar 2023

  3. Xiao R, Huang B, Zhou H et al (2022) A state-of-the-art review of crushed urban waste glass used in OPC and AAMs (geopolymer): Progress and challenges. Clean Mater 4:100083. https://doi.org/10.1016/j.clema.2022.100083

    Article  CAS  Google Scholar 

  4. Zhang Y, Xiao R, Jiang X et al (2020) Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J Clean Prod 273:122970. https://doi.org/10.1016/j.jclepro.2020.122970

    Article  CAS  Google Scholar 

  5. Dadsetan S, Siad H, Lachemi M, Sahmaran M (2020) Extensive evaluation on the effect of glass powder on the rheology, strength, and microstructure of metakaolin-based geopolymer binders. Constr Build Mater 268:121168. https://doi.org/10.1016/j.conbuildmat.2020.121168

    Article  CAS  Google Scholar 

  6. 20 Recycling Statistics for Eco-Conscious Canadians in 2022 (2022). https://reviewmoose.ca/blog/recycling-statistics/. Accessed 8 Mar 2023

  7. Zhang L, Yue Y (2018) Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology. Constr Build Mater 181:527–534. https://doi.org/10.1016/j.conbuildmat.2018.06.040

    Article  CAS  Google Scholar 

  8. Manikandan P, Vasugi V, Siddika A et al (2021) A critical review of waste glass powder as an aluminosilicate source material for sustainable geopolymer concrete production. Silicon 13:1–26. https://doi.org/10.1007/s12633-020-00929-w

    Article  CAS  Google Scholar 

  9. Dong W, Li W, Tao Z (2021) A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet. Resour Conserv Recycl 172:105664. https://doi.org/10.1016/j.resconrec.2021.105664

    Article  CAS  Google Scholar 

  10. Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities - a review. Waste Manag 28:459–467. https://doi.org/10.1016/j.wasman.2007.02.008

    Article  PubMed  Google Scholar 

  11. Nandy B, Sharma G, Garg S et al (2015) Recovery of consumer waste in India - a mass flow analysis for paper, plastic and glass and the contribution of households and the informal sector. Resour Conserv Recycl 101:167–181. https://doi.org/10.1016/j.resconrec.2015.05.012

    Article  Google Scholar 

  12. Solid waste diversion and disposal (2022) . https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/solid-waste-diversion-disposal.html. Accessed 8 Mar 2023

  13. Xiao R, Ma Y, Jiang X et al (2020) Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J Clean Prod 252:119610. https://doi.org/10.1016/j.jclepro.2019.119610

    Article  CAS  Google Scholar 

  14. Duxson PJL, Lukey GC, van Deventer JSJ (2007) The role of inorganic polymer technology in the development of “green concrete.” Cem Concr Res 37:1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018

    Article  CAS  Google Scholar 

  15. Davidovits J (1991) Geopolymers - Inorganic polymeric new materials. J Therm Anal 37:1633–1656. https://doi.org/10.1007/BF01912193

    Article  CAS  Google Scholar 

  16. Davidovits J, Davidovics M, Davidovits N (1994) Process for obtaining a geopolymeric alumno-slicate and products thus obtained. United States Patent, No. 5,342,595, Aug. 30, 1994

  17. Assaedi H, Shaikh FUA, Low IM (2016) Effect of nano-clay on mechanical and thermal properties of geopolymer. J Asian Ceram Soc 4:19–28. https://doi.org/10.1016/j.jascer.2015.10.004

    Article  Google Scholar 

  18. Okoye FN, Durgaprasad J, Singh NB (2016) Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int 42:3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084

    Article  CAS  Google Scholar 

  19. Adak D, Sarkar M, Mandal S (2017) Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr Build Mater 135:430–439. https://doi.org/10.1016/j.conbuildmat.2016.12.111

    Article  CAS  Google Scholar 

  20. Degefu DM, Liao Z, Berardi U, Labbé G (2022) The dependence of thermophysical and hygroscopic properties of macro-porous geopolymers on Si/Al. J Non Cryst Solids 582:121432. https://doi.org/10.1016/j.jnoncrysol.2022.121432

    Article  CAS  Google Scholar 

  21. Aziz IH, Al Bakri Abdullah MM, Heah CY, Liew YM (2020) Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature. Adv Cem Res 32:465–475. https://doi.org/10.1680/JADCR.18.00162

    Article  Google Scholar 

  22. Hamid Abed M, Abbas IS, Canakci H (2022) Influence of mechanochemical activation on the rheological, fresh, and mechanical properties of one-part geopolymer grout. Adv Cem Res:1–38. https://doi.org/10.1680/JADCR.21.00205

  23. Zhang YS, Sun W, Li ZJ (2005) Hydration process of potassium polysialate (K-PSDS) geopolymer cement. Adv Cem Res 17:23–28. https://doi.org/10.1680/adcr.2005.17.1.23

    Article  Google Scholar 

  24. Das D, Rout PK (2023) Synthesis of inorganic polymeric materials from industrial solid waste. Silicon 15:1771–1791. https://doi.org/10.1007/s12633-022-02116-5

    Article  CAS  Google Scholar 

  25. Nadeem M, Ilyas S, Haq EU et al (2022) Improved water retention and positive behavior of silica based geopolymer utilizing granite powder. Silicon 14:2337–2349. https://doi.org/10.1007/s12633-021-01047-x

    Article  CAS  Google Scholar 

  26. Radhika N, Sathish M (2022) A review on Si-based ceramic matrix composites and their infiltration based techniques. Springer, Netherlands

    Book  Google Scholar 

  27. Awoyera P, Adesina A (2019) A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud Constr Mater 11:e00268. https://doi.org/10.1016/j.cscm.2019.e00268

    Article  Google Scholar 

  28. Driouich A, Chajri F, El Hassani SEA et al (2020) Optimization synthesis geopolymer based mixture metakaolin and fly ash activated by alkaline solution. J Non Cryst Solids 544:120197. https://doi.org/10.1016/j.jnoncrysol.2020.120197

    Article  CAS  Google Scholar 

  29. Sivasakthi M, Jeyalakshmi R, Rajamane NP, Jose R (2018) Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites. J Non Cryst Solids 499:117–130. https://doi.org/10.1016/j.jnoncrysol.2018.07.027

    Article  CAS  Google Scholar 

  30. Bouguermouh K, Bouzidi N, Mahtout L et al (2017) Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: the role of alkaline activator. J Non Cryst Solids 463:128–137. https://doi.org/10.1016/j.jnoncrysol.2017.03.011

    Article  CAS  Google Scholar 

  31. Wang Y, Wang X, Lou Y et al (2022) Effect of mechanical activation on reaction mechanism of one-part fly ash/slag-based geopolymer. Adv Cem Res. https://doi.org/10.1680/JADCR.21.00033

    Article  Google Scholar 

  32. Poowancum A, Aengchuan P (2022) Utilisation of low-reactivity fly ash for fabricating geopolymer materials. Adv Cem Res:1–8. https://doi.org/10.1680/JADCR.21.00025

  33. Zhang J, Li S, Li Z et al (2021) Workability and microstructural properties of red-mud-based geopolymer with different particle sizes. Adv Cem Res 33:210–223. https://doi.org/10.1680/JADCR.19.00085

    Article  Google Scholar 

  34. Liu L, Liu H, Xu Y et al (2022) Chemical deformation and mass change of metakaolin-based geopolymer grouting material in sulfate environment. Adv Cem Res. https://doi.org/10.1680/JADCR.21.00090

    Article  Google Scholar 

  35. Khater HM (2014) Studying the effect of thermal and acid exposure on alkaliactivated slag geopolymer. Adv Cem Res 26:1–9. https://doi.org/10.1680/adcr.11.00052

    Article  CAS  Google Scholar 

  36. Tome S, Nana A, Kaze CR et al (2022) Resistance of alkali-activated blended volcanic ash-MSWI-FA mortar in sulphuric acid and artificial seawater. Silicon 14:2687–2694. https://doi.org/10.1007/s12633-021-01055-x

    Article  CAS  Google Scholar 

  37. Papa E, Medri V, Landi E et al (2014) Production and characterization of geopolymers based on mixed compositions of metakaolin and coal ashes. Mater Des 56:409–415. https://doi.org/10.1016/j.matdes.2013.11.054

    Article  CAS  Google Scholar 

  38. Cyr M, Idir R, Poinot T (2012) Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J Mater Sci 47:2782–2797. https://doi.org/10.1007/s10853-011-6107-2

    Article  CAS  Google Scholar 

  39. Christiansen MU (2013) An investigation of waste glass-based geopolymers supplemented with alumina. Diss Michigan Technol Univ 21:1–416

    Google Scholar 

  40. Maraghechi H, Salwocki S, Rajabipour F (2017) Utilisation of alkali activated glass powder in binary mixtures with Portland cement, slag, fly ash and hydrated lime. Mater Struct Constr 50:16. https://doi.org/10.1617/s11527-016-0922-5

    Article  CAS  Google Scholar 

  41. Zhang S, Keulen A, Arbi K, Ye G (2017) Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem Concr Res 102:29–40. https://doi.org/10.1016/j.cemconres.2017.08.012

    Article  CAS  Google Scholar 

  42. Samarakoon MH, Ranjith PG, De Silva VRS (2020) Effect of soda-lime glass powder on alkali-activated binders: rheology, strength and microstructure characterization. Constr Build Mater 241:118013. https://doi.org/10.1016/j.conbuildmat.2020.118013

    Article  CAS  Google Scholar 

  43. Rashidian-Dezfouli H, Rangaraju PR, Kothala VSK (2018) Influence of selected parameters on compressive strength of geopolymer produced from ground glass fiber. Constr Build Mater 162:393–405. https://doi.org/10.1016/j.conbuildmat.2017.09.166

    Article  CAS  Google Scholar 

  44. Sadat MR, Bringuier S, Muralidharan K et al (2016) An atomistic characterization of the interplay between composition, structure and mechanical properties of amorphous geopolymer binders. J Non Cryst Solids 434:53–61. https://doi.org/10.1016/j.jnoncrysol.2015.11.022

    Article  CAS  Google Scholar 

  45. Idir R, Cyr M, Tagnit-Hamou A (2013) Role of the nature of reaction products in the differing behaviours of fine glass powders and coarse glass aggregates used in concrete. Mater Struct Constr 46:233–243. https://doi.org/10.1617/s11527-012-9897-z

    Article  CAS  Google Scholar 

  46. Puertas F, Torres-Carrasco M (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res 57:95–104. https://doi.org/10.1016/j.cemconres.2013.12.005

    Article  CAS  Google Scholar 

  47. Rakhimova NR, Rakhimov RZ (2019) Toward clean cement technologies: a review on alkali-activated fly-ash cements incorporated with supplementary materials. J Non Cryst Solids 509:31–41. https://doi.org/10.1016/j.jnoncrysol.2019.01.025

    Article  CAS  Google Scholar 

  48. Mendes BC, Pedroti LG, Vieira CMF et al (2022) Evaluation of eco-efficient geopolymer using chamotte and waste glass-based alkaline solutions. Case Stud Constr Mater 16:e00847. https://doi.org/10.1016/j.cscm.2021.e00847

    Article  Google Scholar 

  49. Liu Y, Shi C, Zhang Z, Li N (2019) An overview on the reuse of waste glasses in alkali-activated materials. Resour Conserv Recycl 144:297–309. https://doi.org/10.1016/j.resconrec.2019.02.007

    Article  Google Scholar 

  50. Shi C, Zheng K (2007) A review on the use of waste glasses in the production of cement and concrete. Resour Conserv Recycl 52:234–247. https://doi.org/10.1016/j.resconrec.2007.01.013

    Article  Google Scholar 

  51. Wang WC, Chen BT, Wang HY, Chou HC (2016) A study of the engineering properties of alkali-activated waste glass material (AAWGM). Constr Build Mater 112:962–969. https://doi.org/10.1016/j.conbuildmat.2016.03.022

    Article  CAS  Google Scholar 

  52. Bobirică C, Shim JH, Pyeon JH, Park JY (2015) Influence of waste glass on the microstructure and strength of inorganic polymers. Ceram Int 41:13638–13649. https://doi.org/10.1016/j.ceramint.2015.07.160

    Article  CAS  Google Scholar 

  53. Shevchenko VV, Kotsay GN (2020) Influence of glass powder additives on the hydration process of Portland cement. Glas Phys Chem 46:653–656. https://doi.org/10.1134/S1087659620060231

    Article  CAS  Google Scholar 

  54. Long WJ, Lin C, Ye TH et al (2021) Stabilization/solidification of hazardous lead glass by geopolymers. Constr Build Mater 294:123574. https://doi.org/10.1016/j.conbuildmat.2021.123574

    Article  CAS  Google Scholar 

  55. Sobolev K, Türker P, Soboleva S, Iscioglu G (2007) Utilization of waste glass in ECO-cement: strength properties and microstructural observations. Waste Manag 27:971–976. https://doi.org/10.1016/j.wasman.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  56. Liu G, Florea MVA, Brouwers HJH (2019) Waste glass as binder in alkali activated slag–fly ash mortars. Mater Struct Constr 52:1–12. https://doi.org/10.1617/s11527-019-1404-3

    Article  CAS  Google Scholar 

  57. Ahmad J, Zhou Z (2023) Strength and durability properties of waste glass based self compacting concrete: a review. Silicon. https://doi.org/10.1007/s12633-023-02413-7

    Article  Google Scholar 

  58. Mallum I, Abdul AR, Lim NHAS, Omolayo N (2022) Sustainable utilization of waste glass in concrete: a review. Silicon 14:3199–3214. https://doi.org/10.1007/s12633-021-01152-x

    Article  CAS  Google Scholar 

  59. El-Shamy TM, Pantano CG (1977) Decomposition of silicate glasses in alkaline solutions. Nature 266:704–706

    Article  CAS  Google Scholar 

  60. El-Naggar MR, El-Dessouky MI (2017) Re-use of waste glass in improving properties of metakaolin-based geopolymers: mechanical and microstructure examinations. Constr Build Mater 132:543–555. https://doi.org/10.1016/j.conbuildmat.2016.12.023

    Article  CAS  Google Scholar 

  61. Yoo DY, Lee Y, You I et al (2022) Utilization of liquid crystal display (LCD) glass waste in concrete: a review. Cem Concr Compos 130:104542. https://doi.org/10.1016/j.cemconcomp.2022.104542

    Article  CAS  Google Scholar 

  62. Kouassi SS, Andji J, Bonnet JP, Rossignol S (2010) Dissolution of waste glasses in high alkaline solutions. Ceram - Silikaty 54:235–240

    CAS  Google Scholar 

  63. Vafaei M, Allahverdi A (2017) High strength geopolymer binder based on waste-glass powder. Adv Powder Technol 28:215–222. https://doi.org/10.1016/j.apt.2016.09.034

    Article  CAS  Google Scholar 

  64. Wang CC, Wang HY, Chen BT, Peng YC (2017) Study on the engineering properties and prediction models of an alkali-activated mortar material containing recycled waste glass. Constr Build Mater 132:130–141. https://doi.org/10.1016/j.conbuildmat.2016.11.103

    Article  CAS  Google Scholar 

  65. Shoaei P, Ameri F, Reza Musaeei H et al (2020) Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: a comprehensive comparative study. Constr Build Mater 251:118991. https://doi.org/10.1016/j.conbuildmat.2020.118991

    Article  CAS  Google Scholar 

  66. Si R, Guo S, Dai Q, Wang J (2020) Atomic-structure, microstructure and mechanical properties of glass powder modified metakaolin-based geopolymer. Constr Build Mater 254:119303. https://doi.org/10.1016/j.conbuildmat.2020.119303

    Article  CAS  Google Scholar 

  67. Das SK, Shrivastava S (2022) Durability analysis and optimization of a binary system of waste cement concrete and glass-based geopolymer mortar. J Mater Cycles Waste Manag 24:1281–1294. https://doi.org/10.1007/s10163-022-01400-1

    Article  CAS  Google Scholar 

  68. Varma DN, Singh SP (2023) Recycled waste glass as precursor for synthesis of slag-based geopolymer. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.516

    Article  Google Scholar 

  69. Lu JX, Poon CS (2018) Use of waste glass in alkali activated cement mortar. Constr Build Mater 160:399–407. https://doi.org/10.1016/j.conbuildmat.2017.11.080

    Article  CAS  Google Scholar 

  70. Li L, Lu JX, Zhang B, Poon CS (2020) Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes. Constr Build Mater 258:120381. https://doi.org/10.1016/j.conbuildmat.2020.120381

    Article  CAS  Google Scholar 

  71. Manikandan P, Natrayan L, Duraimurugan S, Vasugi V (2022) Influence of waste glass powder as an aluminosilicate precursor in synthesizing ternary blended alkali-activated binder. Silicon. https://doi.org/10.1007/s12633-021-01533-2

    Article  Google Scholar 

  72. İpek S (2022) Macro and micro characteristics of eco-friendly fly ash-based geopolymer composites made of different types of recycled sand. J Build Eng 52:104431. https://doi.org/10.1016/j.jobe.2022.104431

    Article  Google Scholar 

  73. J-xin Lu, Z-hua Duan, Poon CS (2017) Combined use of waste glass powder and cullet in architectural mortar. Cem Concr Compos 82:34–44. https://doi.org/10.1016/j.cemconcomp.2017.05.011

    Article  CAS  Google Scholar 

  74. Samantasinghar S, Singh SP (2018) Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Constr Build Mater 170:225–234. https://doi.org/10.1016/j.conbuildmat.2018.03.026

    Article  CAS  Google Scholar 

  75. Palacios M, Puertas F (2011) Effectiveness of mixing time on hardened properties of waterglass-activated slag pastes and mortars. ACI Mater J 108:73–78. https://doi.org/10.14359/51664218

    Article  CAS  Google Scholar 

  76. Mithanthaya IR, Marathe S, Rao NBS, Bhat V (2017) Influence of superplasticizer on the properties of geopolymer concrete using industrial wastes. Mater Today Proc 4:9803–9806. https://doi.org/10.1016/j.matpr.2017.06.270

    Article  Google Scholar 

  77. Toniolo N, Taveri G, Hurle K et al (2017) Fly-ash-based geopolymers: how the addition of recycled glass or red mud waste influences the structural and mechanical properties. J Ceram Sci Technol 8:411–419. https://doi.org/10.4416/JCST2017-00053

    Article  Google Scholar 

  78. Toniolo N, Rincón A, Roether JA et al (2018) Extensive reuse of soda-lime waste glass in fly ash-based geopolymers. Constr Build Mater 188:1077–1084. https://doi.org/10.1016/j.conbuildmat.2018.08.096

    Article  CAS  Google Scholar 

  79. Yoo DY, Lee SK, You I et al (2022) Development of strain-hardening geopolymer mortar based on liquid-crystal display (LCD) glass and blast furnace slag. Constr Build Mater 331:127334. https://doi.org/10.1016/j.conbuildmat.2022.127334

    Article  CAS  Google Scholar 

  80. Derinpinar AN, Karakoç MB, Özcan A (2022) Performance of glass powder substituted slag based geopolymer concretes under high temperature. Constr Build Mater 331:127318. https://doi.org/10.1016/j.conbuildmat.2022.127318

    Article  CAS  Google Scholar 

  81. Sethi H, Bansal PP, Sharma R (2019) Effect of addition of GGBS and glass powder on the properties of geopolymer concrete. Iran J Sci Technol - Trans Civ Eng 43:607–617. https://doi.org/10.1007/s40996-018-0202-4

    Article  Google Scholar 

  82. Zribi M, Samet B, Baklouti S (2019) Effect of curing temperature on the synthesis, structure and mechanical properties of phosphate-based geopolymers. J Non Cryst Solids 511:62–67. https://doi.org/10.1016/j.jnoncrysol.2019.01.032

    Article  CAS  Google Scholar 

  83. Verma M, Dev N (2022) Effect of liquid to binder ratio and curing temperature on the engineering properties of the geopolymer concrete. Silicon 14:1743–1757. https://doi.org/10.1007/s12633-021-00985-w

    Article  CAS  Google Scholar 

  84. Ojha A, Aggarwal P (2023) Development of mix design guidelines for low calcium fly ash-based geopolymer concrete – a quantitative approach. Silicon 15:3681–3694. https://doi.org/10.1007/s12633-023-02299-5

    Article  CAS  Google Scholar 

  85. Toniolo N (2019) Novel geopolymers incorporating silicate waste. Thesis report, Friedrich-Alexander-University (FAU)

  86. Martinez-Lopez R, Ivan Escalante-Garcia J (2016) Alkali activated composite binders of waste silica soda lime glass and blast furnace slag: strength as a function of the composition. Constr Build Mater 119:119–129. https://doi.org/10.1016/j.conbuildmat.2016.05.064

    Article  CAS  Google Scholar 

  87. Wang W, Noguchi T (2020) Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: a state-of-the-art review. Constr Build Mater 252:119105. https://doi.org/10.1016/j.conbuildmat.2020.119105

    Article  CAS  Google Scholar 

  88. He P, Zhang B, Lu JX, Poon CS (2020) A ternary optimization of alkali-activated cement mortars incorporating glass powder, slag and calcium aluminate cement. Constr Build Mater 240:117983. https://doi.org/10.1016/j.conbuildmat.2019.117983

    Article  CAS  Google Scholar 

  89. He P, Zhang B, Lu JX, Poon CS (2021) Reaction mechanisms of alkali-activated glass powder-ggbs-CAC composites. Cem Concr Compos 122:104143. https://doi.org/10.1016/j.cemconcomp.2021.104143

    Article  CAS  Google Scholar 

  90. Hui-Teng N, Cheng-Yong H, Yun-Ming L et al (2022) Comparison of thermal performance between fly ash geopolymer and fly ash-ladle furnace slag geopolymer. J Non Cryst Solids 585:121527. https://doi.org/10.1016/j.jnoncrysol.2022.121527

    Article  CAS  Google Scholar 

  91. Abdulkareem OA, Mustafa Al Bakri AM, Kamarudin H et al (2014) Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr Build Mater 50:377–387. https://doi.org/10.1016/j.conbuildmat.2013.09.047

    Article  Google Scholar 

  92. Xiao R, Jiang X, Wang Y et al (2021) Experimental and thermodynamic study of alkali-activated waste glass and calcium sulfoaluminate cement blends: shrinkage, efflorescence potential, and phase assemblages. J Mater Civ Eng 33:1–14. https://doi.org/10.1061/(asce)mt.1943-5533.0003941

    Article  CAS  Google Scholar 

  93. Bobirică C, Shim JH, Park JY (2018) Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram Int 44:5886–5893. https://doi.org/10.1016/j.ceramint.2017.12.085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out at the National Institute of Technology Rourkela, India, under the authority of the Ministry of Human Resource and Development, Government of India. Further, the authors acknowledge all the researchers whose works are used for the present review.

Author information

Authors and Affiliations

Authors

Contributions

Datla Neeraj Varma: conceptualization, methodology, investigation, validation, writing—original draft preparation. Suresh Prasad Singh: Investigation, supervision, writing—review and editing.

Corresponding author

Correspondence to Suresh Prasad Singh.

Ethics declarations

Consent for Publication

All the authors confirm the consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, D.N., Singh, S.P. A Review on Waste Glass-based Geopolymer Composites as a Sustainable Binder. Silicon 15, 7685–7703 (2023). https://doi.org/10.1007/s12633-023-02629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02629-7

Keywords

Navigation