Skip to main content

Advertisement

Log in

Synthesis of Inorganic Polymeric Materials from Industrial Solid Waste

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present paper highlights the high strength of inorganic polymer (geopolymer) prepared from industrial solid waste. Fly ash (industrial solid waste) was used as the starting raw materials and a solution of sodium hydroxide solutions and sodium silicate solutions were used as alkaline activators. The concentration of the sodium hydroxide solutions is maintained at 6, 8, 10, 12, 14, and 16 molars, and the ratio of sodium hydroxide to sodium silicate solution is maintained at 1. The alkaline solutions were mixed with fly ash powder, followed by casting at room temperature. The as cast geopolymer samples were artificially cured at 60ºC for a fixed time of 50 h. Mechanical testing of cured geopolymer specimens was carried out and the maximum value of compressive strength (73 MPa), flexural strength (14.1 MPa) and Vickers hardness (153.33 HV) were achieved. The achieved data were confirmed by characterizing the specimens by FESEM-EDS, TEM and FTIR techniques as well. Further, the water absorption test and the durability test of geopolymer specimens under 5% HNO3, H2SO4, HCl, and NaCl solutions were done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Dheyaaldin MH, Mosaberpanah MA, Alzeebaree R (2022) Performance of Fiber-Reinforced Alkali-Activated Mortar with/without Nano Silica and Nano Alumina. Sustainability 14:2527. https://doi.org/10.3390/su14052527

    Article  CAS  Google Scholar 

  2. Sohal B, Singh S, Singh SIK et al (2021) Comparing the nutrient changes, heavy metals, and genotoxicity assessment before and after vermicomposting of thermal fly ash using Eisenia fetida. Environ Sci Pollut Res 28:48154–48170. https://doi.org/10.1007/s11356-021-13726-8

    Article  CAS  Google Scholar 

  3. Dwivedi A, Jain MK (2014) Fly ash – waste management and overview: A Review. Recent Res Sci Technol 6:30–35

    Google Scholar 

  4. Roy R, Das D, Rout PK (2022) A Review of Advanced Mullite Ceramics. Eng Sci 18:20–30. https://doi.org/10.30919/es8d582

    Article  CAS  Google Scholar 

  5. Panias D, Giannopoulou IP, Perraki T (2007) Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf A Physicochem Eng Asp 301:246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064

    Article  CAS  Google Scholar 

  6. Das D, Rout PK (2021) Synthesis and Characterization of Fly Ash and GBFS Based Geopolymer Material. Biointerface Res Appl Chem 11:14506–14519. https://doi.org/10.33263/BRIAC116.1450614519

    Article  CAS  Google Scholar 

  7. Sall M, Dieye G, Traoré A et al (2022) Technological and Environmental Behavior of Coal Fly Ash in Lime-Based Materials. Geomaterials 12:15–29. https://doi.org/10.4236/gm.2022.122002

    Article  CAS  Google Scholar 

  8. Chancey RT, Stutzman P, Juenger MCG, Fowler DW (2010) Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cem Concr Res 40:146–156. https://doi.org/10.1016/j.cemconres.2009.08.029

    Article  CAS  Google Scholar 

  9. Roy R, Das D, Rout PK (2022) Fabrication of mullite ceramic by using industrial waste. Smart Cities. CRC Press, Boca Raton, pp 285–291. https://doi.org/10.1201/9781003287186-13

  10. Tammam Y, Uysal M, Canpolat O (2021) Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar. Eur J Environ Civ Eng 1–24. https://doi.org/10.1080/19648189.2021.1925157

  11. Xu J, Kang A, Wu Z et al (2021) Effect of high-calcium basalt fiber on the workability, mechanical properties and microstructure of slag-fly ash geopolymer grouting material. Constr Build Mater 302:124089. https://doi.org/10.1016/j.conbuildmat.2021.124089

    Article  CAS  Google Scholar 

  12. Liang G, Li H, Zhu H et al (2021) Reuse of waste glass powder in alkali-activated metakaolin/fly ash pastes: Physical properties, reaction kinetics and microstructure. Resour Conserv Recycl 173:105721. https://doi.org/10.1016/j.resconrec.2021.105721

    Article  CAS  Google Scholar 

  13. Pagnotta S, Tenorio AL, Tinè MR, Lezzerini M (2020) Geopolymers as a potential material for preservation and restoration of Urban Build Heritage: an overview. IOP Conf Ser Earth Environ Sci 609:012057. https://doi.org/10.1088/1755-1315/609/1/012057

    Article  Google Scholar 

  14. Das D, Rout PK (2019) Utilization of thermal industry waste: From trash to cash. Carbon – Sci Technol 11:43–48

  15. Duxson P, Fernández-Jiménez A, Provis JL et al (2007) Geopolymer technology: The current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  16. Hamidi RM, Man Z, Azizli KA (2016) Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer. Procedia Eng 148:189–193. https://doi.org/10.1016/j.proeng.2016.06.568

    Article  CAS  Google Scholar 

  17. Das D, Rout PK (2021) Synthesis, Characterization and Properties of Fly Ash Based Geopolymer Materials. J Mater Eng Perform 30:3213–3231. https://doi.org/10.1007/s11665-021-05647-x

    Article  CAS  Google Scholar 

  18. Khale D, Chaudhary R (2007) Mechanism of geopolymerization and factors influencing its development: A review. J Mater Sci 42:729–746. https://doi.org/10.1007/s10853-006-0401-4

    Article  CAS  Google Scholar 

  19. Strecker K, Tonholo LF, Lombardi CT (2019) Effect of Curing Temperature, Activator Solution Composition and Particle Size in Brazilian Fly-Ash Based Geopolymer. Production 22:1–12

    Google Scholar 

  20. Chen K, Lin W-T, Liu W (2021) Effect of NaOH concentration on properties and microstructure of a novel reactive ultra-fine fly ash geopolymer. Adv Powder Technol 32:2929–2939. https://doi.org/10.1016/j.apt.2021.06.008

    Article  CAS  Google Scholar 

  21. Das D, Das AP, Rout PK (2021) Effect of slag addition on compressive strength and microstructural features of fly ash based geopolymer. Circular economy in the construction industry. CRC Press, Boca Raton, pp 61–68. https://doi.org/10.1201/9781003217619-9

    Chapter  Google Scholar 

  22. Chen C, Li Q, Shen L, Zhai J (2012) Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Environ Technol 33:1313–1321. https://doi.org/10.1080/09593330.2011.626797

    Article  CAS  PubMed  Google Scholar 

  23. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2005) Fly Ash-Based Geopolymer Concrete. Aust J Struct Eng 6:77–86. https://doi.org/10.1080/13287982.2005.11464946

    Article  Google Scholar 

  24. Chen K, Wu D, Xia L et al (2021) Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Constr Build Mater 279:122496. https://doi.org/10.1016/j.conbuildmat.2021.122496

    Article  CAS  Google Scholar 

  25. Bernal SA, Provis JL (2014) Durability of Alkali-Activated Materials: Progress and Perspectives. J Am Ceram Soc 97:997–1008. https://doi.org/10.1111/jace.12831

    Article  CAS  Google Scholar 

  26. Provis JL, Palomo A, Shi C (2015) Advances in understanding alkali-activated materials. Cem Concr Res 78:110–125. https://doi.org/10.1016/j.cemconres.2015.04.013

    Article  CAS  Google Scholar 

  27. Li N, Shi C, Wang Q et al (2017) Composition design and performance of alkali-activated cements. Mater Struct 50:178. https://doi.org/10.1617/s11527-017-1048-0

    Article  CAS  Google Scholar 

  28. Verma M, Dev N (2021) Sodium hydroxide effect on the mechanical properties of flyash-slag based geopolymer concrete. Struct Concr 22:E368–E379. https://doi.org/10.1002/suco.202000068

    Article  Google Scholar 

  29. Chithambaram SJ, Kumar S, Prasad MM, Adak D (2018) Effect of parameters on the compressive strength of fly ash based geopolymer concrete. Struct Concr 19:1202–1209. https://doi.org/10.1002/suco.201700235

    Article  Google Scholar 

  30. Öz A, Bayrak B, Kavaz E et al (2022) The radiation shielding and microstructure properties of quartzic and metakaolin based geopolymer concrete. Constr Build Mater 342:127923. https://doi.org/10.1016/j.conbuildmat.2022.127923

    Article  CAS  Google Scholar 

  31. Kaplan G, Öz A, Bayrak B et al (2022) Effect of quartz powder on mid-strength fly ash geopolymers at short curing time and low curing temperature. Constr Build Mater 329:127153. https://doi.org/10.1016/j.conbuildmat.2022.127153

    Article  CAS  Google Scholar 

  32. Parveen SD, Junaid MT et al (2018) Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Constr Build Mater 180:298–307. https://doi.org/10.1016/j.conbuildmat.2018.05.286

    Article  CAS  Google Scholar 

  33. Chiranjeevi K, Vijayalakshmi MM, Praveenkumar TR (2021) Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles. Appl Nanosci. https://doi.org/10.1007/s13204-021-01916-2

    Article  Google Scholar 

  34. Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069

    Article  Google Scholar 

  35. Balakrishnan N, Usha S, Thomas PK (2020) Fly ash based geopolymer bricks: a sustainable construction material. In: Dasgupta K, Sajith A, Unni Kartha G, Joseph A, Kavitha P, Praseeda K (eds) Proceedings of SECON'19. SECON 2019. Lecture notes in civil engineering, vol 46. Springer, Cham, pp 279–290. https://doi.org/10.1007/978-3-030-26365-2_27

    Chapter  Google Scholar 

  36. Al Bakri Abdullah MM, Jamaludin L, Kamarudin H et al (2013) Study on fly ash based geopolymer for coating applications. Adv Mater Res 686:227–233. https://doi.org/10.4028/www.scientific.net/AMR.686.227

    Article  CAS  Google Scholar 

  37. Ducman V, Korat L (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater Charact 113:207–213. https://doi.org/10.1016/j.matchar.2016.01.019

    Article  CAS  Google Scholar 

  38. Liu Y, Yan C, Zhang Z et al (2016) A facile method for preparation of floatable and permeable fly ash-based geopolymer block. Mater Lett 185:370–373. https://doi.org/10.1016/j.matlet.2016.09.044

    Article  CAS  Google Scholar 

  39. Hadi MNS, Al-Azzawi M, Yu T (2018) Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Constr Build Mater 175:41–54. https://doi.org/10.1016/j.conbuildmat.2018.04.092

    Article  CAS  Google Scholar 

  40. Dave N, Sahu V, Misra AK (2020) Development of geopolymer cement concrete for highway infrastructure applications. J Eng Des Technol 18:1321–1333. https://doi.org/10.1108/JEDT-10-2019-0263

    Article  Google Scholar 

  41. Ghafoor MT, Khan QS, Qazi AU et al (2021) Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr Build Mater 273:121752. https://doi.org/10.1016/j.conbuildmat.2020.121752

    Article  CAS  Google Scholar 

  42. Castillo H, Collado H, Droguett T et al (2021) Factors Affecting the Compressive Strength of Geopolymers: A Review. Minerals 11:1317. https://doi.org/10.3390/min11121317

    Article  CAS  Google Scholar 

  43. Van Jaarsveld JGS, Van Deventer JSJ (1999) Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Ind Eng Chem Res 38:3932–3941. https://doi.org/10.1021/ie980804b

    Article  CAS  Google Scholar 

  44. Nath SK, Kumar S (2019) Role of alkali concentration on reaction kinetics of fly ash geopolymerization. J Non Cryst Solids 505:241–251. https://doi.org/10.1016/j.jnoncrysol.2018.11.007

    Article  CAS  Google Scholar 

  45. Morsy MS, Alsayed SH, Al-Salloum Y, Almusallam T (2014) Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arab J Sci Eng 39:4333–4339. https://doi.org/10.1007/s13369-014-1093-8

    Article  CAS  Google Scholar 

  46. Sathonsaowaphak A, Chindaprasirt P, Pimraksa K (2009) Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater 168:44–50. https://doi.org/10.1016/j.jhazmat.2009.01.120

    Article  CAS  PubMed  Google Scholar 

  47. Manjarrez L, Nikvar-Hassani A, Shadnia R, Zhang L (2019) Experimental study of geopolymer binder synthesized with copper mine tailings and low-calcium copper slag. J Mater Civ Eng 31:1–14. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002808

    Article  CAS  Google Scholar 

  48. Abdullah MMA, Kamarudin H, Mohammed H et al (2011) The relationship of NaOH molarity, Na2SiO3/NaOH ratio, fly ash/alkaline activator ratio, and curing temperature to the strength of fly ash-based geopolymer. Adv Mater Res 328–330:1475–1482. https://doi.org/10.4028/www.scientific.net/AMR.328-330.1475

    Article  CAS  Google Scholar 

  49. Yahya Z, Abdullah MMAB, Hussin K et al (2015) Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials (Basel) 8:2227–2242. https://doi.org/10.3390/ma8052227

    Article  CAS  Google Scholar 

  50. Sarkar M, Maiti M, Malik MA et al (2018) Influence of metal oxide (V2O5) in recycled waste materials for advanced durable construction technology. Constr Build Mater 171:770–778. https://doi.org/10.1016/j.conbuildmat.2018.03.231

    Article  CAS  Google Scholar 

  51. Farhana ZF, Kamarudin H, Rahmat A, Al Bakri AMM (2014) The Relationship between Water Absorption and Porosity for Geopolymer Paste. Mater Sci Forum 803:166–172. https://doi.org/10.4028/www.scientific.net/MSF.803.166

    Article  Google Scholar 

  52. Anurag M, Deepika C, Namrata J et al (2008) Effect of concentration of alkaline liquid and curing time on strength and water absorption of geopolymer concrete. ARPN J Eng Appl Sci 3:14–18

    Google Scholar 

  53. Abdollahnejad Z, Pacheco-Torgal F, Aguiar JB, Jesus C (2014) Durability performance of fly ash based one-part geopolymer mortars. Key Eng Mater 634:113–120. https://doi.org/10.4028/www.scientific.net/KEM.634.113

    Article  CAS  Google Scholar 

  54. Yeswanth Sai T, Athira K, Sairam V (2022) A study on geopolymer concrete. In: Kondraivendhan B, Modhera CD, Matsagar V (eds) Sustainable building materials and construction. Lecture notes in civil engineering, vol 222. Springer, Singapore, pp 65–72. https://doi.org/10.1007/978-981-16-8496-8_8

    Chapter  Google Scholar 

  55. Pangdaeng S, Phoo-ngernkham T, Sata V, Chindaprasirt P (2014) Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater Des 53:269–274. https://doi.org/10.1016/j.matdes.2013.07.018

    Article  CAS  Google Scholar 

  56. Mehta A, Siddique R (2017) Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Constr Build Mater 150:792–807. https://doi.org/10.1016/j.conbuildmat.2017.06.067

    Article  CAS  Google Scholar 

  57. Chindaprasirt P, Rukzon S (2008) Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr Build Mater 22:1601–1606. https://doi.org/10.1016/j.conbuildmat.2007.06.010

    Article  Google Scholar 

  58. Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng 22:1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

    Article  CAS  Google Scholar 

  59. Part WK, Ramli M, Cheah CB (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 77:370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065

    Article  Google Scholar 

  60. Ul Haq E, Kunjalukkal Padmanabhan S, Licciulli A (2014) Synthesis and characteristics of fly ash and bottom ash based geopolymers-A comparative study. Ceram Int 40:2965–2971. https://doi.org/10.1016/j.ceramint.2013.10.012

    Article  CAS  Google Scholar 

  61. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2005) On the development of fly ash-based geopolymer concrete. ACI Mater J:467–472

  62. Kupaei RH, Alengaram UJ, Bin JMZ, Nikraz H (2013) Mix design for fly ash based oil palm shell geopolymer lightweight concrete. Constr Build Mater 43:490–496. https://doi.org/10.1016/j.conbuildmat.2013.02.071

    Article  Google Scholar 

  63. Sukmak P, Horpibulsuk S, Shen S-L (2013) Strength development in clay–fly ash geopolymer. Constr Build Mater 40:566–574. https://doi.org/10.1016/j.conbuildmat.2012.11.015

    Article  Google Scholar 

  64. Boonserm K, Sata V, Pimraksa K, Chindaprasirt P (2012) Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cem Concr Compos 34:819–824. https://doi.org/10.1016/j.cemconcomp.2012.04.001

    Article  CAS  Google Scholar 

  65. Nath SK, Kumar S (2020) Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Constr Build Mater 233:117294. https://doi.org/10.1016/j.conbuildmat.2019.117294

    Article  CAS  Google Scholar 

  66. Kumar S, Mucsi G, Kristály F, Pekker P (2017) Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers. Adv Powder Technol 28:805–813. https://doi.org/10.1016/j.apt.2016.11.027

    Article  CAS  Google Scholar 

  67. Chithambaram SJ, Kumar S, Prasad MM (2019) Thermo-mechanical characteristics of geopolymer mortar. Constr Build Mater 213:100–108. https://doi.org/10.1016/j.conbuildmat.2019.04.051

    Article  CAS  Google Scholar 

  68. Lee WKW, Van Deventer JSJ (2003) Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates. Langmuir 19:8726–8734. https://doi.org/10.1021/la026127e

    Article  CAS  Google Scholar 

  69. Kumar S, Kristály F, Mucsi G (2015) Geopolymerisation behaviour of size fractioned fly ash. Adv Powder Technol 26:24–30. https://doi.org/10.1016/j.apt.2014.09.001

    Article  CAS  Google Scholar 

  70. Khater HM, El Naggar A (2020) Combination between organic polymer and geopolymer for production of eco-friendly metakaolin composite. J Aust Ceram Soc 56:599–608. https://doi.org/10.1007/s41779-019-00371-1

    Article  CAS  Google Scholar 

  71. Rożek P, Król M, Mozgawa W (2018) Spectroscopic studies of fly ash-based geopolymers. Spectrochim Acta - Part A Mol Biomol Spectrosc 198:283–289. https://doi.org/10.1016/j.saa.2018.03.034

    Article  CAS  Google Scholar 

  72. Lee WKW, van Deventer JSJ (2002) The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids Surfaces A Physicochem Eng Asp 211:115–126. https://doi.org/10.1016/S0927-7757(02)00239-X

    Article  CAS  Google Scholar 

  73. Jang JG, Lee HK (2016) Effect of fly ash characteristics on delayed high-strength development of geopolymers. Constr Build Mater 102:260–269. https://doi.org/10.1016/j.conbuildmat.2015.10.172

    Article  CAS  Google Scholar 

  74. Çevik A, Alzeebaree R, Humur G et al (2018) Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram Int 44:12253–12264. https://doi.org/10.1016/j.ceramint.2018.04.009

    Article  CAS  Google Scholar 

  75. Rashad AM, Gharieb M (2021) An investigation on the effect of sea sand on the properties of fly ash geopolymer mortars. Innov Infrastruct Solut 6:53. https://doi.org/10.1007/s41062-020-00421-9

    Article  Google Scholar 

  76. Bakharev T (2005) Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res 35:1233–1246. https://doi.org/10.1016/j.cemconres.2004.09.002

    Article  CAS  Google Scholar 

  77. Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35:658–670. https://doi.org/10.1016/j.cemconres.2004.06.005

    Article  CAS  Google Scholar 

  78. Thokchom S, Ghosh P, Ghosh S (2011) Durability of fly ash geopolymer mortars in nitric acid–effect of alkali (Na2o) content. J Civ Eng Manag 17:393–399. https://doi.org/10.3846/13923730.2011.594225

    Article  Google Scholar 

  79. García-Lodeiro I, Palomo A, Fernández-Jiménez A (2007) Alkali–aggregate reaction in activated fly ash systems. Cem Concr Res 37:175–183. https://doi.org/10.1016/j.cemconres.2006.11.002

    Article  CAS  Google Scholar 

  80. Thokchom S, Ghosh P, Ghosh S (2009) Resistance of fly ash based geopolymer mortars in sulfuric acid. ARPN J Eng Appl Sci 4:65–70

    Google Scholar 

  81. Meesala CR, Verma NK, Kumar S (2020) Critical review on fly-ash based geopolymer concrete. Struct Concr 21:1013–1028. https://doi.org/10.1002/suco.201900326

    Article  Google Scholar 

  82. Zhuang XY, Chen L, Komarneni S et al (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267. https://doi.org/10.1016/j.jclepro.2016.03.019

    Article  CAS  Google Scholar 

  83. Jena S, Panigrahi R, Sahu P (2019) Mechanical and durability properties of fly ash geopolymer concrete with silica fume. J Inst Eng Ser A 100:697–705. https://doi.org/10.1007/s40030-019-00400-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Govind Ballabh Pant National Institute of Himalayan Environment and Sustainable Development (IERP), Government of India, for supporting the project entitled ‘‘Production of Geopolymer based construction material from Fly ash: An industrial waste.’’ grant number GBPI/IERP/17-18/44 dated 28th march 2018. The fly ash used in this research work was supplied by Mr. Ekonthung Ngullie ((DGM) and his team from NTPC Bongaigaon, Assam, India. The author also acknowledges the Department of Chemical and Polymer Engineering, Tripura University for the FTIR facility and the Central Instrumentation Centre, Tripura University for the FESEM facility.

Funding

The work has received financial support from Govind Ballabh Pant National Institute of Himalayan Environment and Sustainable Development (IERP), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in each part of the manuscript.

Corresponding author

Correspondence to Prasanta Kumar Rout.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All of the authors confirm the consent for Publication.

Research Involving Human Participants and/or Animals

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Rout, P.K. Synthesis of Inorganic Polymeric Materials from Industrial Solid Waste. Silicon 15, 1771–1791 (2023). https://doi.org/10.1007/s12633-022-02116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02116-5

Keywords

Navigation