Skip to main content
Log in

Systemic Oxidative Stress: A Key Point in Neurodegeneration — A Review

  • Published:
The journal of nutrition, health & aging

Abstract

Systemic oxidative stress (SOS) has an important role in the mechanisms activation of neuronal death, involved in the neurodegenerative disease (ND) etiology. Brain is susceptible to oxidative stress injuries due to its high energy and metabolic request, therefore minimal imbalances of the redox state, as occurs in mitochondrial dysfunction, favour tissue injury and neuroinflammatory mechanisms activation. ND affect around the world about a billion people, without distinction of sex, educational level and economic status. Public measures generation that prevent ND from the SOS are possible promising therapeutic targets that could reduce the ND incidence. We discuss here the effects and mechanisms of SOS derived neurodegeneration, as well as the neuroinflammation repercussions for some cerebral structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Torrell G. Enfermedades neurodegenerativas. Actualización en Medicina de Familia. 2015; 11(7): 374–383.

    Google Scholar 

  2. National Institute of Neurological Disorders and Stroke. Neurodegenerative diseases. 2017.

  3. Noncommunicable Diseases Progress Monitor, 2017. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/handle/10665/258940/9789241513029-eng.pdf?sequence=1

  4. Andersen J. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci. 10: S18–S25 https://doi.org/10.1038/nrn1434

    Article  CAS  Google Scholar 

  5. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012; 342(3): 619–30 https://doi.org/10.1124/jpet.112.192138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vitale G, Salvioli S, Franceschi C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013; 9: 228–240 https://doi.org/10.1038/nrendo.2013.29

    Article  CAS  PubMed  Google Scholar 

  7. Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol. 2017; 13: 477–491 https://doi.org/

    Article  CAS  PubMed  Google Scholar 

  8. Harman D. Aging: a theory based on free radical and radiation chemistry. Int J Gerontol. 1956; 11: 298–300.

    Article  CAS  Google Scholar 

  9. Mechanick J, Hurley D, Garvey W. Adiposity-based chronic disease as a new diagnostic term: The American Association of Clinical Endocrinologists and American College of Endocrinology position statement. Endocrine Practice. 2017; 23(3): 372–378 https://doi.org/10.4158/EP161688.PS

    Article  PubMed  Google Scholar 

  10. Oliveira C, Villar-Delfino P, Dos Anjos P, Nogueira A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018; 9(119) https://doi.org/10.1038/s41419-017-0135-z.

  11. Vaziri N, Rodríguez-Iturbide B. Mechanisms of Disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Prac Nephrol. 2006; 2: 582–593 https://doi.org/10.1038/ncpneph0283

    Article  CAS  Google Scholar 

  12. Paschos A, Pandya R, Duivenvoorden WCM, Pinthus JH. Oxidative stress in prostate cancer: changing research concepts towards a novel paradigm for prevention and therapeutics. Prostate Cancer Prostatic Dis. 2013; 16: 217–225 https://doi.org/10.1038/pcan.2013.13

    Article  CAS  PubMed  Google Scholar 

  13. Roy-Sarkar S, Banerjee S. Gut microbiota in neurodegenerative disorders. J Neuroimmunol. 2019; 328(15): 98–104 https://doi.org/10.1016/jjneuroim.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  14. Martine G, Diniz J. Economy, society and environment in the 21st century: three pillars or trilemma of sustainability?. Revista Brasileira de Estudos de População. 2015; 32(3): 433–459 https://doi.org/10.1590/S0102-3098201500000027

    Article  Google Scholar 

  15. Monteiro C, Moubarac J, Cannon G, Ng S, Popkin B. Ultra-processed products are becoming dominant in the global food system. 2014; Obesity rev. 2: 21–28 https://doi.org/10.1111/obr.12107

    Google Scholar 

  16. Jovell AJ. The XXI century patient. Anales del Sistema Sanitario de Navarra. 2006; 29(3): 85–90.

    PubMed  Google Scholar 

  17. Parimisetty A. Dorsemans AC, Awada R, Ravanan P, Diotel N, Lefebvre d’Hellencourt C. Secret talk between adipose tissueand central nervous system via secreted factors — an emerging frontier in the neurodegenerative research. J. Neuroinflammation. 2016; 13: 67 https://doi.org/10.1186/s12974-016-0530-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015; 4: 180–183 https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol. 2007; 47:143–183 https://doi.org/10.1146/annurev.pharmtox.47.120505.105122

    Article  CAS  PubMed  Google Scholar 

  20. Hernández A, Rull A, Rodríguez E, Riera M, Luciano F, Camps J, Menéndez J, Joven J. Mitochondrial Dysfunction: A Basic Mechanism in Inflammation-Related Non-Communicable Diseases and Therapeutic Opportunities. Mediators Inflamm. 2013; 1–13. https://doi.org/10.1155/2013/135698.

    Article  CAS  Google Scholar 

  21. Schieber M, Chandel N. ROS Function in Redox Signaling and Oxidative Stress. Current Biol. 2014; 24(10): R453–R462 https://doi.org/10.1016/jxub.2014.03.034

    Article  CAS  Google Scholar 

  22. Davis RE, Williams M. Mitochondrial function and dysfunction: an update. J Pharmacol Exp Ther. 2012; 342: 598–607 https://doi.org/10.1124/jpet.112.192104

    Article  CAS  PubMed  Google Scholar 

  23. Area-Gomez E, De Groof A, Bonilla E, Montesinos J, Tanji K, et al. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis. 2018; 9(335): 1–10 https://doi.org/10.1038/s41419-017-0215-0

    CAS  Google Scholar 

  24. Martínez-Leo E, Acevedo J, Segura M. Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomed Pharmacother. 2016; 83: 816–826 https://doi.org/10.1016/j.biopha.2016.07.051

    Article  PubMed  CAS  Google Scholar 

  25. Sies H, Berndt C, Jones D. Oxidative stress. Annu. Rev. Biochem. 2017; 86: 25.1–25.34 https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  CAS  Google Scholar 

  26. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015; 97(5): 55–74 https://doi.org/10.1016/j.ejmech.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  27. Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018; 592(5): 728–742 https://doi.org/10.1002/1873-3468.12956.

    Article  CAS  PubMed  Google Scholar 

  28. Kim SY, Jeong JM, Kim S, Seo W, Kim MH, Choi WM, et al. Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat Commun. 2017; 8 (2247) https://doi.org/10.1038/s41467-017-02325-2.

  29. Kong MJ, Han SJ, Kim JI, Park JW, Park KM. Mitochondrial NADP+-dependent isocitrate dehydrogenase deficiency increases cisplatin-induced oxidative damage in the kidney tubule cells. Cell Death Dis. 2018; 9(488) https://doi.org/10.1038/s41419-018-0537-6.

  30. Hu Q, Ren J, Li G, Wu J, Wu X, Wang G, Gu G, et al. The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis. 2018; 9(403) https://doi.org/10.1038/s41419-018-0436-x.

  31. Mattson M, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci. 2006; 7: 278–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guillemot-Legris O, Muccioli G. Obesity- induced neuroinflammation: Beyond the hypothalamus. Trends Neurosci. 2017; 40(4): 237–253.

    Article  CAS  PubMed  Google Scholar 

  33. Obermeier O, Daneman R, Ransohoff R. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013; 19: 1584–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nzou G, Wicks RT, Wicks EE, Seale SA, Sane CH, Chen A, Murphy SV, et al. Human Cortex Spheroid with a Functional Blood Brain Barrier for High-Throughput Neurotoxicity Screening and Disease Modeling. Sci Rep. 2018; 8 (7413) https://doi.org/10.1038/s41598-018-25603-5

  35. Forsberg SL, Ilieva M, Michel T. Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. Transl Psychiatry. 2018; 8(14) https://doi.org/10.1038/s41398-017-0062-x

  36. Baufeld C, Osterloh A, Prokop S, Miller K, Heppner F. High-fat diet-induced brain region specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol. 2016; 132: 361–375 https://doi.org/10.1007/s00401-016-1595-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rhea E, Salameh T, Logsdon A, Hanson A, Erickson M, Banks W. Blood-Brain Barriers in Obesity. The AAPS Journal. 2017; 19(4): 921–930 https://doi.org/10.1208/s12248-017-0079-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lochhead J, McCaffrey G, Quigley C, Finch J, De Marco K. et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occluding during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 2010; 30: 1625–1636 https://doi.org/10.1038/jcbfm.2010.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCaffrey G, Staatz WD, Quigley CA, Nametz N, Seelbach MJ, Campos CR, et al. Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem. 2007; 103(6): 2540–55 https://doi.org/10.1111/j.1471-4159.2007.04943.x

    Article  CAS  PubMed  Google Scholar 

  40. Walter JK, Rueckert C, Voss M, Mueller SL, Piontek J, Gast K, Blasig IE. The oligomerization of the coiled coil-domain of occludin is redox sensitive. Ann NY Acad Sci. 2009; 1165:19–27 https://doi.org/10.1111/j.1749-6632.2009.04058.x

    Article  CAS  PubMed  Google Scholar 

  41. Ouyang S, Hsuchou H, Kastin A, Wang Y, Yu C, Pan W. Diet-induced obesity suppresses expression of many proteins at the blood-brain barrier. J Cereb Blood Flow Metab. 2014; 34(1): 43–51.

    Article  CAS  PubMed  Google Scholar 

  42. Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J. 1999; 342: 481–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tufekci K.U, Civi Bayin E, Genc S, Genc K. The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson’s Disease, Parkinsons Dis. 2011; 314082 https://doi.org/10.4061/2011/314082

    Google Scholar 

  44. Shrestha R, Millington O, Brewer J, Bushell T. Is Central Nervous System an Immune-Privileged site? Kathmandu University Med J. 2013; 41(1): 102–107.

    Article  Google Scholar 

  45. Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat Rev Neurosci. 2018; 19: 17–33 https://doi.org/10.1038/nrn.2017.149

    Article  CAS  Google Scholar 

  46. Mizuno T. Neuron-microglia interactions in neuroinflammation. Clin Exp Neuroimmunol. 2015; 6: 225–231.

    Article  CAS  Google Scholar 

  47. Moraes JC, Coope A, Morari J, Cintra DE, Roman EA, Pauli JR, et al. High-fat diet induces apoptosis of hypothalamic neurons. PLoS One. 2009; 4(4): e5045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen W, Zhang X, Huang W. Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep. 2016; 13: 3391–3396 https://doi.org/10.3892/mmr.2016.4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li T, Zhang S. Microgliosis in the Injured Brain: Infiltrating Cells and Reactive Microglia Both Play a Role. Neuroscientist. 2016; 22(2): 165–70 https://doi.org/10.1177/1073858415572079

    Article  PubMed  Google Scholar 

  50. Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2016; https://doi.org/10.1038/nri.2016.123

    Article  PubMed  CAS  Google Scholar 

  51. Zhang D, Hu X, Qian L, O’Callaghan J, Hong J. Astrogliosis in CNS pathologies: Is there a role for microglia?. Mol neurobiol. 2010; 41: 232–241 https://doi.org/10.1007/s12035-010-8098-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhu W. Methylation of FOXO3 regulates neuronal cell death. Acta Pharmacol Sinica. 2012; 33: 577 https://doi.org/10.1038/aps.2012.48

    Article  CAS  Google Scholar 

  53. Cai L, Wu X, Lv Y, Xu Y, Mi G, Li J. The neuroprotective and antioxidant activities of protein hydrolysates from grass carp (Ctenopharyngodon idella) skin. JFST. 2015; 52(6), 3750–3755 https://doi.org/10.1007/s13197-014-1438-z

    CAS  Google Scholar 

  54. Xie Q, Hao Y, Tao L, Peng S, Rao C, Chen H, You H, et al. Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep. 2012; 13: 371–377 https://doi.org/10.1038/embor.2012.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xin YJ, Yuan B, Yu B, Wang YQ, Wu JJ, Zhou WH, Qiu Z. Tet1-mediated DNA demethylation regulates neuronal cell death induced by oxidative stress. Sci Rep. 2015; 5 (7645): 1–9 https://doi.org/10.1038/srep07645

    Google Scholar 

  56. Mattson M. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000; 1: 120–130 https://doi.org/10.1038/35040009

    Article  CAS  PubMed  Google Scholar 

  57. Zhang S, Tang M, Luo H, Shi C, Xu Y. Necroptosis in neurodegenerative diseases: a potential therapeutic target. Cell Death Dis. 2017; 8: e2905. https://doi.org/10.1038/cddis.2017.286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cusack C, Swahari V, Henley W, Ramsey M, Deshmukh M. Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun. 2013; 4(1876): 1–11 https://doi.org/10.1038/ncomms2910

    Google Scholar 

  59. Sorrells S, Paredes M, Cebrian-Silla A, Sandoval K, Qi D, Kelley K. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Letter. 2018; 1–5 https://doi.org/10.1038/nature25975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pelcastre D, Martínez-Leo E, Segura-Campos M. Functional and Biological Potential of Bioactive Compounds in Foods for the Dietary Treatment of Type 2 Diabetes Mellitus. In: Functional Food — Improve Health through Adequate Food, 1st edition. Ed. InTech; 2017.

  61. Martínez-Leo E, Villavicencio T, Segura-Campos M. Functional Foods and Chemoprevention in Cancer. In: Grumezescu A, Holban AM, editors. Therapeutic Foods, 1st edition. Elsevier; 2017.

  62. Martínez-Leo E, Rojas R, Segura-Campos M. Protective Effect of Omega 3 Fatty Acids EPA and DHA in the Neurodegenerative Disease. In Mérillon JM, Ramawat KG, editors. Bioactive Molecules in Food, 1st edition. Ed. Springer International. 2018.

  63. Halliwell B. Free radicals and antioxidants — quo vadis?. Trends Pharmacol Sci. 2011; 32. 125–130 https://doi.org/10.1016/j.tips.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  64. Potter A, Buck AC, Self WK, Callanan ME, Sunil S, Capadona JR. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials. 2013; 34:7001–7015 https://doi.org/10.1016/j.biomaterials.2013.05.035

    Article  CAS  PubMed  Google Scholar 

  65. Rodríguez C, Segura A, Del Mar M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit Rev Food Sci Nutr. 2017; 20:1–18 https://doi.org/10.1080/10408398.2017.1399859

    Google Scholar 

  66. Dong W, Gao D, Lin H, Zhang X, Li N, Li F. New insights into mechanism for the effect of resveratrol preconditioning against cerebral ischemic stroke: possible role of matrix metalloprotease-9. Med Hypotheses. Medical Hypotheses. 2008; 70:52–55 https://doi.org/10.1016/j.mehy.2007.04.033

    Article  CAS  PubMed  Google Scholar 

  67. Shukitt-Hale B, Lau FC, Carey AN, Galli RL, Spangler EL, Ingram DK, Joseph JA. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutr Neurosci. 2008; 11: 172–182 https://doi.org/10.1179/147683008X301487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vauzour D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev. 2012; 914273 https://doi.org/10.1155/2012/914273

    Article  CAS  Google Scholar 

  69. Góngora JL. Caffeine as a preventive drug for Parkinson’s disease: epidemiologic evidence and experimental support. Rev Neurol. 2010; 50(4), 221–9.

    Google Scholar 

  70. Fehske CJ, Leuner K, Müller WE. Ginkgo biloba extract (EGb761®) influences monoaminergic neurotransmission via inhibition of NE uptake, but not MAO activity after chronic treatment. Pharmacol Res. 2009; 60: 68–77 https://doi.org/10.1016/j.phrs.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  71. Grimm MO, Stahlmann CP, Mett J, Haupenthal VJ, Zimmer VC, et al. Vitamin E: Curse or benefit in Alzheimer’s disease? A systematic investigation of the impact of α-, γ- and δ-tocopherol on Aβ generation and degradation in neuroblastoma cells. J Nutr Health Aging. 2015; 19:646–654 https://doi.org/10.1007/s12603-015-0506-z.

    Article  CAS  PubMed  Google Scholar 

  72. Zbarsky V, Datla K, Parkar S, Rai D, Aruoma O, Dexter D. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Res. 2005; 39: 1119–25 https://doi.org/10.1080/10715760500233113

    Article  CAS  Google Scholar 

  73. Wu P, Zhang Z, Wang F, Che J. Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacologica Sinica. 2010; 31: 1523–1531 https://doi.org/10.1038/aps.2010.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Segura Campos.

Ethics declarations

Conflict of Interest: The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez Leo, E.E., Segura Campos, M.R. Systemic Oxidative Stress: A Key Point in Neurodegeneration — A Review. J Nutr Health Aging 23, 694–699 (2019). https://doi.org/10.1007/s12603-019-1240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-019-1240-8

Key words

Navigation