Skip to main content
Log in

Vitamin E: Curse or benefit in Alzheimer’s disease? A systematic investigation of the impact of α-, γ- and δ-tocopherol on Aβ generation and degradation in neuroblastoma cells

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

The E vitamins are a class of lipophilic compounds including tocopherols, which have high antioxidative properties. Because of the elevated lipid peroxidation and increased reactive oxidative species in Alzheimer’s disease (AD) many attempts have been made to slow down the progression of AD by utilizing the antioxidative action of vitamin E. Beside the mixed results of these studies nothing is known about the impact of vitamin E on the mechanisms leading to amyloid-β production and degradation being responsible for the plaque formation, one of the characteristic pathological hallmarks in AD. Here we systematically investigate the influence of different tocopherols on Aβ production and degradation in neuronal cell lines.

Measurements

Beside amyloid-β level the mechanisms leading to Aβ production and degradation are examined.

Results

Surprisingly, all tocopherols have shown to increase Aβ level by enhancing the Aβ production and decreasing the Aβ degradation. Aβ production is enhanced by an elevated activity of the involved enzymes, the β- and γ-secretase. These secretases are not directly affected, but tocopherols increase their protein level and expression. We could identify significant differences between the single tocopherols; whereas α-tocopherol had only minor effects on Aβ production, δ-tocopherol showed the highest potency to increase Aβ generation. Beside Aβ production, Aβ clearance was decreased by affecting IDE, one of the major Aβ degrading enzymes.

Conclusions

Our results suggest that beside the beneficial antioxidative effects of vitamin E, tocopherol has in respect to AD also a potency to increase the amyloid-β level, which differ for the analysed tocopherols. We therefore recommend that further studies are needed to clarify the potential role of these various vitamin E species in respect to AD and to identify the form which comprises an antioxidative property without having an amyloidogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabet N, Birks J, and Grimley Evans J. Vitamin E for Alzheimer’s disease. Cochrane Database Syst Rev 2000, CD002854.

    Google Scholar 

  2. Netscher T. Synthesis of vitamin E. Vitam Horm 2007;76, 155–202.

    CAS  PubMed  Google Scholar 

  3. Rigotti A. Absorption, transport, and tissue delivery of vitamin E. Mol Aspects Med 2007;28, 423–36.

    Article  CAS  PubMed  Google Scholar 

  4. Banks R, Speakman JR, and Selman C. Vitamin E supplementation and mammalian lifespan. Mol Nutr Food Res 54, 719–25.

  5. Wagner KH, Kamal-Eldin A, and Elmadfa I. Gamma-tocopherol—an underestimated vitamin? Ann Nutr Metab 2004;48, 169–88.

    Article  CAS  PubMed  Google Scholar 

  6. Vatassery GT, Bauer T, and Dysken M. High doses of vitamin E in the treatment of disorders of the central nervous system in the aged. Am J Clin Nutr 1999;70, 793–801.

    CAS  PubMed  Google Scholar 

  7. Pitchumoni SS and Doraiswamy PM. Current status of antioxidant therapy for Alzheimer’s Disease. J Am Geriatr Soc 1998;46, 1566–72.

    Article  CAS  PubMed  Google Scholar 

  8. Meydani M. Vitamin E. Lancet 1995;345, 170–5.

    Article  CAS  PubMed  Google Scholar 

  9. Grundman M. Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am J Clin Nutr 2000;71, 630S-6S.

    Google Scholar 

  10. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, and Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985;82, 4245–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Haass C. Take five—BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 2004;23, 483–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zinser EG, Hartmann T, and Grimm MO. Amyloid beta-protein and lipid metabolism. Biochim Biophys Acta 2007;1768, 1991–2001.

    Article  CAS  PubMed  Google Scholar 

  13. Grimm MO, Grimm HS, Tomic I, Beyreuther K, Hartmann T, and Bergmann C. Independent inhibition of Alzheimer disease beta- and gamma-secretase cleavage by lowered cholesterol levels. J Biol Chem 2008;283, 11302–11.

    Article  CAS  PubMed  Google Scholar 

  14. Grimm MO, Grosgen S, Riemenschneider M, Tanila H, Grimm HS, and Hartmann T. From brain to food: analysis of phosphatidylcholins, lyso-phosphatidylcholins and phosphatidylcholin-plasmalogens derivates in Alzheimer’s disease human post mortem brains and mice model via mass spectrometry. J Chromatogr A 2011;1218, 7713–22.

    Article  CAS  PubMed  Google Scholar 

  15. Grimm MO, Kuchenbecker J, Grosgen S, Burg VK, Hundsdorfer B, Rothhaar TL et al. Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J Biol Chem 2011;286, 14028–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Grimm MO, Rothhaar TL, Grosgen S, Burg VK, Hundsdorfer B, Haupenthal VJ et al. Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP). J Nutr Biochem 2012;23, 1214–23.

    Article  CAS  PubMed  Google Scholar 

  17. Burg VK, Grimm HS, Rothhaar TL, Grosgen S, Hundsdorfer B, Haupenthal VJ et al. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J Neurosci 2013;33, 16072–87.

    Article  CAS  PubMed  Google Scholar 

  18. Grimm MO, Haupenthal VJ, Rothhaar TL, Zimmer VC, Grosgen S, Hundsdorfer B et al. Effect of Different Phospholipids on alpha-Secretase Activity in the Non-Amyloidogenic Pathway of Alzheimer’s Disease. Int J Mol Sci 2013;14, 5879–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rothhaar TL, Grosgen S, Haupenthal VJ, Burg VK, Hundsdorfer B, Mett J et al. Plasmalogens inhibit APP processing by directly affecting gamma-secretase activity in Alzheimer’s disease. Scientific World Journal 2012, 141240.

    Google Scholar 

  20. Butterfield DA, Hensley K, Harris M, Mattson M, and Carney J. beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem Biophys Res Commun 1994;200, 710–5.

    Article  CAS  PubMed  Google Scholar 

  21. Meda L, Cassatella MA, Szendrei GI, Otvos L, Jr., Baron P, Villalba M et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995;374, 647–50.

    Article  CAS  PubMed  Google Scholar 

  22. Zoeller RA, Morand OH, and Raetz CR. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem 1988;263, 11590–6.

    CAS  PubMed  Google Scholar 

  23. Kamal-Eldin A and Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996;31, 671–701.

    Article  CAS  PubMed  Google Scholar 

  24. Kontush K and Schekatolina S. Vitamin E in neurodegenerative disorders: Alzheimer’s disease. Ann N Y Acad Sci 2004;1031, 249–62.

    Article  CAS  PubMed  Google Scholar 

  25. Roy S, Lado BH, Khanna S, and Sen CK. Vitamin E sensitive genes in the developing rat fetal brain: a high-density oligonucleotide microarray analysis. FEBS Lett 2002;530, 17–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rota C, Rimbach G, Minihane AM, Stoecklin E, and Barella L. Dietary vitamin E modulates differential gene expression in the rat hippocampus: potential implications for its neuroprotective properties. Nutr Neurosci 2005;8, 21–9.

    Article  CAS  PubMed  Google Scholar 

  27. Grimm HS, Beher D, Lichtenthaler SF, Shearman MS, Beyreuther K, and Hartmann T. gamma-Secretase cleavage site specificity differs for intracellular and secretory amyloid beta. J Biol Chem 2003;278, 13077–85.

    Article  CAS  PubMed  Google Scholar 

  28. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150, 76–85.

    Article  CAS  PubMed  Google Scholar 

  29. Ida N, Hartmann T, Pantel J, Schroder J, Zerfass R, Forstl H et al. Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 1996;271, 22908–14.

    Article  CAS  PubMed  Google Scholar 

  30. Livak KJ and Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25, 402–8.

    Article  CAS  PubMed  Google Scholar 

  31. Rohan de Silva HA, Jen A, Wickenden C, Jen LS, Wilkinson SL, and Patel AJ. Cell-specific expression of beta-amyloid precursor protein isoform mRNAs and proteins in neurons and astrocytes. Brain Res Mol Brain Res 1997;47, 147–56.

    Article  CAS  PubMed  Google Scholar 

  32. Burton GW and Traber MG. Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 1990;10, 357–82.

    Article  CAS  PubMed  Google Scholar 

  33. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, and Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 1999;398, 513–7.

    Article  CAS  PubMed  Google Scholar 

  34. De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 2003;38, 9–12.

    Article  PubMed  Google Scholar 

  35. Ahn K, Shelton CC, Tian Y, Zhang X, Gilchrist ML, Sisodia SS et al. Activation and intrinsic gamma-secretase activity of presenilin 1. Proc Natl Acad Sci U S A 2010;107, 21435–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, and De Strooper B. Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2000;2, 461–2.

    Article  CAS  PubMed  Google Scholar 

  37. Shirotani K, Edbauer D, Prokop S, Haass C, and Steiner H. Identification of distinct gamma-secretase complexes with different APH-1 variants. J Biol Chem 2004;279, 41340–5.

    Article  CAS  PubMed  Google Scholar 

  38. Meckler X and Checler F. Visualization of Specific gamma-Secretase Complexes using Bimolecular Fluorescence Complementation. J Alzheimers Dis 2014;40, 161–76.

    CAS  PubMed  Google Scholar 

  39. Sinha S and Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci U S A 1999;96, 11049–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999;286, 735–41.

    Article  CAS  PubMed  Google Scholar 

  41. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL et al. BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci 2001;4, 233–4.

    Article  CAS  PubMed  Google Scholar 

  42. Huse JT, Liu K, Pijak DS, Carlin D, Lee VM, and Doms RW. Beta-secretase processing in the trans-Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer’s disease brain. J Biol Chem 2002;277, 16278–84.

    Article  CAS  PubMed  Google Scholar 

  43. Vassar R, Kovacs DM, Yan R, and Wong PC. The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 2009;29, 12787–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Eckman EA and Eckman CB. Abeta-degrading enzymes: modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans 2005;33, 1101–5.

    Article  CAS  PubMed  Google Scholar 

  45. Kurochkin IV and Goto S. Alzheimer’s beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 1994;345, 33–7.

    Article  CAS  PubMed  Google Scholar 

  46. Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB et al.. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998;273, 32730–8.

    Article  CAS  PubMed  Google Scholar 

  47. Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP et al. Metabolic regulation of brain Abeta by neprilysin. Science 2001;292, 1550–2.

    Article  CAS  PubMed  Google Scholar 

  48. Hersh LB and Rodgers DW. Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res 2008;5, 225–31.

    Article  CAS  PubMed  Google Scholar 

  49. Grimm MO, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, and Hartmann T. Neprilysin and Abeta Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer’s Disease. Front Aging Neurosci 2013;5, 98.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Azzi A, Gysin R, Kempna P, Munteanu A, Negis Y, Villacorta L et al. Vitamin E mediates cell signaling and regulation of gene expression. Ann N Y Acad Sci 2004;1031, 86–95.

    Article  CAS  PubMed  Google Scholar 

  51. Campbell SE, Stone WL, Whaley SG, Qui M, and Krishnan K. Gamma (gamma) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (gamma) expression in SW 480 human colon cancer cell lines. BMC Cancer 2003;3, 25.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Li-Weber M, Weigand MA, Giaisi M, Suss D, Treiber MK, Baumann S et al. Vitamin E inhibits CD95 ligand expression and protects T cells from activation-induced cell death. J Clin Invest 2002;110, 681–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Glauert HP. Vitamin E and NF-kappaB activation: a review. Vitam Horm 2007;76, 135–53.

    CAS  PubMed  Google Scholar 

  54. Yevenes LF, Klein A, Castro JF, Marin T, Leal N, Leighton F et al. Lysosomal vitamin E accumulation in Niemann-Pick type C disease. Biochim Biophys Acta 2012;1822, 150–60.

    Article  CAS  PubMed  Google Scholar 

  55. Kryscio RJ, Abner EL, Schmitt FA, Goodman PJ, Mendiondo M, Caban-Holt A et al. A randomized controlled Alzheimer’s disease prevention trial’s evolution into an exposure trial: the PREADViSE Trial. J Nutr Health Aging 2013;17, 72–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Sutachan JJ, Casas Z, Albarracin SL, Stab BR, 2nd, Samudio I, Gonzalez J et al. Cellular and molecular mechanisms of antioxidants in Parkinson’s disease. Nutr Neurosci 2012;15, 120–6.

    Article  CAS  PubMed  Google Scholar 

  57. Yang CS, Lu G, Ju J, and Li GX. Inhibition of inflammation and carcinogenesis in the lung and colon by tocopherols. Ann N Y Acad Sci 2010;1203, 29–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Vance TM, Su J, Fontham ET, Koo SI, and Chun OK. Dietary antioxidants and prostate cancer: a review. Nutr Cancer 2013;65, 793–801.

    Article  CAS  PubMed  Google Scholar 

  59. Stone WL, Krishnan K, Campbell SE, and Palau VE. The role of antioxidants and pro-oxidants in colon cancer. World J Gastrointest Oncol 2014;6, 55–66.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ozkanlar S and Akcay F. Antioxidant vitamins in atherosclerosis—animal experiments and clinical studies. Adv Clin Exp Med 2012;21, 115–23.

    PubMed  Google Scholar 

  61. Riccioni G, D’Orazio N, Salvatore C, Franceschelli S, Pesce M, and Speranza L. Carotenoids and vitamins C and E in the prevention of cardiovascular disease. Int J Vitam Nutr Res 2012;82, 15–26.

    Article  CAS  PubMed  Google Scholar 

  62. Ohshima Y, Mizuno T, Yamada K, Matsumoto S, Nagakane Y, Kondo M et al. Low vitamin and carotenoid levels are related to cerebral white matter lesions. J Nutr Health Aging 2013;17, 456–60.

    Article  CAS  PubMed  Google Scholar 

  63. Goldenstein H, Levy NS, Lipener YT, and Levy AP. Patient selection and vitamin E treatment in diabetes mellitus. Expert Rev Cardiovasc Ther 2013;11, 319–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K et al. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimers Dement, 2014;10, 485–502

    Article  Google Scholar 

  65. Mangialasche F, Solomon A, Kareholt I, Hooshmand B, Cecchetti R, Fratiglioni L et al. Serum levels of vitamin E forms and risk of cognitive impairment in a Finnish cohort of older adults. Exp Gerontol 2013;48, 1428–35.

    Article  CAS  PubMed  Google Scholar 

  66. Arlt S, Muller-Thomsen T, Beisiegel U, and Kontush A. Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer’s disease. Neurochem Res 2012;37, 2706–14.

    Article  CAS  PubMed  Google Scholar 

  67. Sung S, Yao Y, Uryu K, Yang H, Lee VM, Trojanowski JQ et al. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J 2004;18, 323–5.

    CAS  PubMed  Google Scholar 

  68. Crichton GE, Bryan J, and Murphy KJ. Dietary antioxidants, cognitive function and dementia—a systematic review. Plant Foods Hum Nutr 2013;68, 279–92.

    Article  CAS  PubMed  Google Scholar 

  69. Li FJ, Shen L, and Ji HF. Dietary intakes of vitamin E, vitamin C, and beta-carotene and risk of Alzheimer’s disease: a meta-analysis. J Alzheimers Dis 2012;31, 253–8.

    CAS  PubMed  Google Scholar 

  70. Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 2012;69, 836–41.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus O. W. Grimm.

Additional information

both authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, M.O.W., Stahlmann, C.P., Mett, J. et al. Vitamin E: Curse or benefit in Alzheimer’s disease? A systematic investigation of the impact of α-, γ- and δ-tocopherol on Aβ generation and degradation in neuroblastoma cells. J Nutr Health Aging 19, 646–654 (2015). https://doi.org/10.1007/s12603-015-0506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-015-0506-z

Key words

Navigation