Skip to main content

The Role of Oxidative Stress in Neurodegenerative Diseases

  • Chapter
  • First Online:
Studies on Psychiatric Disorders

Abstract

Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) are worldwide health and economic problems related to increased life expectancy. The exact cause of the etiology of these disorders is not known. Neurodegenerative diseases are of multifactorial etiology, including the role of epigenetic and environmental factors. It has been proposed that oxidative stress–related damage of several macromolecules plays a key role in their pathogenesis. Here, we want to revise the current knowledge regarding the role of reactive oxygen species (ROS) and oxidative stress in neurodegeneration occurring in neurological diseases such as AD, PD, ALS, and MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

8-OHG:

8-hydroxyguanine

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ApoE:

Apolipoprotein E

APP:

β-amyloid precursor protein

Aβ:

Amyloid-β

BER:

Base excision repair

CD:

Caudate nucleus

CHMP2B:

Charged multivesicular body protein 2B

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

Cu/Zn SOD:

Copper/zinc superoxide dismutase

DA:

Dopamine

FUS/TLS:

Fused in sarcoma/translated in liposarcoma

GFAP:

Glial fibrillary acidic protein

GS:

Glutamine synthetase

GSH:

Glutathione

HNE:

4-hydroxynonenal

Hsp:

Heat shock protein

l-DOPA:

l-3,4-dihydroxyphenylalanine

LRRK2:

Leucine-rich repeat kinase 2

MCI:

Mild cognitive impairment

mETC:

Mitochondrial electron transport chain

MS:

Multiple sclerosis

mtDNA:

Mitochondrial DNA

nDNA:

Nuclear DNA

NF-L:

Neurofilament-light

NFTs:

Neurofibrillary tangles

NO:

Nitric oxide

Nrf2:

Nuclear erythroid 2-related factor 2

PD:

Parkinson’s disease

PINK-1:

PTEN-induced putative kinase 1

ROS:

Reactive oxygen species

SN:

Substantia nigra

SOD2:

Superoxide dismutase2

TDP-43:

TAR DNA-binding protein

VAPB:

Vesicle-associated membrane protein B

References

  • Abou-Sleiman PM et al (2003) The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 54:283–286

    CAS  PubMed  Google Scholar 

  • Alam ZI et al (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    CAS  PubMed  Google Scholar 

  • Amorini AM et al (2009) Increased of uric acid and purine compounds in biological fluids of multiple sclerosis patients. Clin Biochem 42:1001–1006

    CAS  PubMed  Google Scholar 

  • Arai T et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    CAS  PubMed  Google Scholar 

  • Baik JH et al (1995) Parkinsonian like locomotor impairment in mice lacking dopamine D2 receptors. Nature 6548:424–428

    Google Scholar 

  • Baldwin AS Jr (2001) Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 1:3–6

    Google Scholar 

  • Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48:629–641

    CAS  PubMed  Google Scholar 

  • Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22:1852–1856

    PubMed  Google Scholar 

  • Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1366:211–223

    CAS  PubMed  Google Scholar 

  • Beal MF et al (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654

    CAS  PubMed  Google Scholar 

  • Bertram L, Tanzi RE (2004) Alzheimer’s disease: one disorder, too many genes? Hum Mol Genet 13(Spec. No. 1):R135–R141

    CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 5:1127–1132

    Google Scholar 

  • Bonifati V et al (2008) LRRK2 mutation analysis in parkinson disease families with evidence of linkage to PARK8. Neurology 24:2348–2349

    Google Scholar 

  • Bove J et al (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494

    PubMed Central  PubMed  Google Scholar 

  • Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    CAS  PubMed  Google Scholar 

  • Butterfield DA et al (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22:223–232

    CAS  PubMed  Google Scholar 

  • Butterfield DA et al (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calabrese V et al (2009a) Vitagenes, cellular stress response and acetylcarnitine: relevance to hormesis. Biofactors 35:146–160

    CAS  PubMed  Google Scholar 

  • Calabrese V et al (2009b) Nitric oxide in cell survival: a Janus molecule. Antioxid Redox Signal 11:2717–2739

    CAS  PubMed  Google Scholar 

  • Calabrese V et al (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell GR et al (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492

    CAS  PubMed  Google Scholar 

  • Carri MT et al (1997) Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 414:365–368

    CAS  PubMed  Google Scholar 

  • Castegna A et al (2011) Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis. Neuroscience 185:97–105

    CAS  PubMed  Google Scholar 

  • Castellani RJ, Smith MA (2011) Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is ‘too big to fail’. J Pathol 224:147–152

    CAS  PubMed  Google Scholar 

  • Chang Y et al (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 3:e2849

    PubMed Central  PubMed  Google Scholar 

  • Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780:1362–1367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow N et al (1998) Expression profiles of multiple genes in single neurons of Alzheimer’s disease. Proc Natl Acad Sci U S A 95:9620–9625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colangelo V et al (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70:462–473

    CAS  PubMed  Google Scholar 

  • Coppede F, Migliore L (2009) DNA damage and repair in Alzheimer’s disease. Curr Alzheimer Res 6:36–47

    CAS  PubMed  Google Scholar 

  • Coppedè F et al (2006) Genes and environment in neurodegeneration. Biosci Rep 26:341–367

    PubMed  Google Scholar 

  • Czlonkowska A et al (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 2:137–143

    Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    CAS  PubMed  Google Scholar 

  • Devi L et al (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    CAS  PubMed  Google Scholar 

  • Dhaliwal GK, Grewal RP (2000) Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport 11:2507–2509

    CAS  PubMed  Google Scholar 

  • Ding Q et al (2006) Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem Res 31:705–710

    CAS  PubMed  Google Scholar 

  • Dutta R et al (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    CAS  PubMed  Google Scholar 

  • Eckman CB et al (1997) A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet 6:2087–2089

    CAS  PubMed  Google Scholar 

  • Eikelenboom P et al (2000) Neuroinflammation and Alzheimer disease: clinical and therapeutic implications. Alzheimer Dis Assoc Disord 14(Suppl 1):S54–S61

    CAS  PubMed  Google Scholar 

  • Ekstrand MI et al (2007) Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A 104:1325–1330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrante RJ et al (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074

    CAS  PubMed  Google Scholar 

  • Ferreti G et al (2005) Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler 11:677–682

    Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261–268

    CAS  PubMed  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    CAS  PubMed  Google Scholar 

  • Goldberg MS et al (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial parkinsonism-linked gene DJ-1. Neuron 45:489–496

    CAS  PubMed  Google Scholar 

  • Greenway MJ et al (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413

    CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    CAS  PubMed  Google Scholar 

  • Haass C et al (1994) Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem 269:17741–17748

    CAS  PubMed  Google Scholar 

  • Haider L et al (2011) Oxidative damage in multiple sclerosis lesions. Brain 134:1914–1924

    PubMed Central  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    CAS  PubMed  Google Scholar 

  • Halliwell B, Jenner P (1998) Impaired clearance of oxidised proteins in neurodegenerative diseases. Lancet 9114:1510

    Google Scholar 

  • Harman D (2006) Alzheimer’s disease pathogenesis: role of aging. Ann N Y Acad Sci 1067:454–460

    CAS  PubMed  Google Scholar 

  • Heath PR, Shaw PJ (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26:438–458

    CAS  PubMed  Google Scholar 

  • Hensley K et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    CAS  PubMed  Google Scholar 

  • Hirano A et al (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:461–470

    CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S, Hartmann A (2005) Neuroinflammatory processes in Parkinson’s disease. Parkinsonism Relat Disord 11:S9–S15

    PubMed  Google Scholar 

  • Ihara Y et al (2005) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27:105–108

    CAS  PubMed  Google Scholar 

  • Isobe C, Abe T, Terayama Y (2010) Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett 469(1):159–163

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2001) The pathology of Parkinson’s disease. Adv Neurol 86:55–72

    CAS  PubMed  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13:24–34

    PubMed  Google Scholar 

  • Jenner P (2003) Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinson’s disease. Curr Opin Neurol 16:S3–S7

    CAS  PubMed  Google Scholar 

  • Jenner P et al (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32(Suppl):S82–S87

    CAS  PubMed  Google Scholar 

  • Jin CM et al (2010) Mechanisms of l-DOPA-induced cytotoxicity in rat adrenal pheochromocytoma cells: implication of oxidative stress-related kinases and cyclic AMP. Neuroscience 170(2):390–398

    CAS  PubMed  Google Scholar 

  • Jung C, Higgins CM, Xu Z (2002) Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem 83:535–545

    CAS  PubMed  Google Scholar 

  • Kabashi E et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    CAS  PubMed  Google Scholar 

  • Katzman R, Saitoh T (1991) Advances in Alzheimer’s disease. FASEB J 5:278–286

    CAS  PubMed  Google Scholar 

  • Kim NH et al (2004) Oxidative modification of neurofilament-L by the Cu, Zn-superoxide dismutase and hydrogen peroxide system. Biochimie 86:553–559

    CAS  PubMed  Google Scholar 

  • Kirby J et al (2005) Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain 128:1686–1706

    PubMed  Google Scholar 

  • Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 18:3241–3250

    CAS  PubMed  Google Scholar 

  • Korolainen MA et al (2005) Proteomic analysis of glial fibrillary acidic protein in Alzheimer’s disease and aging brain. Neurobiol Dis 20(3):858–870

    CAS  PubMed  Google Scholar 

  • Krige D et al (1992) Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 32:782–788

    CAS  PubMed  Google Scholar 

  • Kwiatkowski TJ Jr et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    CAS  PubMed  Google Scholar 

  • LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    CAS  PubMed  Google Scholar 

  • Lafon-Cazal M et al (1999) mGluR7-like metabotropic glutamate receptors inhibit NMDA-mediated excitotoxicity in cultured mouse cerebellar granule neurons. Eur J Neurosci 11:663–672

    CAS  PubMed  Google Scholar 

  • Lauderdack CM et al (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Ab1-42. J Neurochem 78:413–416

    Google Scholar 

  • Le Belle JE et al (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8:59–71

    PubMed Central  PubMed  Google Scholar 

  • Leigh PN (2007) Amyotrophic lateral sclerosis. In: Eisen AA, Shaw PJ (eds) Motor neuron disorders and related diseases. Elsevier, Edinburgh, pp 249–278

    Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    CAS  PubMed  Google Scholar 

  • Liu Y et al (2003) Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 305:212–218

    CAS  PubMed  Google Scholar 

  • Loeffler DA et al (1994) Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation. Clin Neuropharmacol 4:370–379

    Google Scholar 

  • Loo DT et al (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A 90:7951–7955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovell MA et al (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18:457–461

    CAS  PubMed  Google Scholar 

  • Maguire-Zeiss KA, Short DW, Federoff HJ (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Mol Brain Res 134(1):18–23

    CAS  PubMed  Google Scholar 

  • Mahad D et al (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735

    PubMed Central  PubMed  Google Scholar 

  • Manczak M et al (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromol Med 5:147–162

    CAS  Google Scholar 

  • Manczak M et al (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    CAS  PubMed  Google Scholar 

  • Mandal PK, Tripathi M, Sugunan S (2012) Brain oxidative stress: detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem Biophys Res Commun 417(1):43–48

    CAS  PubMed  Google Scholar 

  • Martin LJ et al (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol 500:20–46

    CAS  PubMed  Google Scholar 

  • Masters CL et al (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGeer EG, McGeer PL (2001) Chronic inflammation in Alzheimer’s disease offers therapeutic opportunities. Expert Rev Neurother 1:53–60

    CAS  PubMed  Google Scholar 

  • Miller E et al (2010) Effects of the wholebody cryotherapy on a total antioxidative status and activities of some antioxidative enzymes in blood of patients with multiple sclerosis—preliminary study. J Med Invest 57:168–173

    PubMed  Google Scholar 

  • Miller E et al (2011) The level of isoprostanes as a non-invasive marker for in vivo lipid peroxidation in secondary progressive multiple sclerosis. Neurochem Res 36:1012–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosley RL et al (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6(5):261–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moss DW, Bates TE (2001) Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci 13(3):529–538

    CAS  PubMed  Google Scholar 

  • Mullaart E et al (1990) Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol Aging 11:169–173

    CAS  PubMed  Google Scholar 

  • Murphy MP (2006) Induction of mitochondrial ROS production by electrophilic lipids: a new pathway of redox signaling? Am J Physiol Heart C 290:H1754–H1755

    CAS  Google Scholar 

  • Mythri RB et al (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36(8):1452–1463

    CAS  PubMed  Google Scholar 

  • Nguyen T, Nioi P, Pickett CB (2009) The nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura AL et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunomura A et al (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964

    CAS  PubMed  Google Scholar 

  • Nunomura A et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    CAS  PubMed  Google Scholar 

  • Nunomura A et al (2004) Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis 17:108–113

    CAS  PubMed  Google Scholar 

  • Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parkinson N et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077

    CAS  PubMed  Google Scholar 

  • Pasinelli P et al (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 1:19–30

    Google Scholar 

  • Perluigi M et al (2009) Redox proteomics identification of HNE-modified brain proteins in Alzheimers disease: Role of lipid peroxidation in AD pathogenesis. Proteomics Clin Appl 3:682–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson LJ, Flood PM (2012) Oxidative stress and microglial cells in Parkinson’s disease. Mediators Inflamm 2012:401264

    PubMed Central  PubMed  Google Scholar 

  • Polymeropoulos MH et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    CAS  PubMed  Google Scholar 

  • Pratico D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29:609–615

    CAS  PubMed  Google Scholar 

  • Qian L et al (2007) Microglia-mediated neurotoxicity is inhibited by morphine through an opioid receptor-independent reduction of NADPH oxidase activity. J Immunol 179:1198–1209

    CAS  PubMed  Google Scholar 

  • Radunovic A et al (1997) Increased mitochondrial superoxide dismutase activity in Parkinson’s disease but not amyotrophic lateral sclerosis motor cortex. Neurosci Lett 239:105–108

    CAS  PubMed  Google Scholar 

  • Rao SD, Yin HZ, Weiss JH (2003) Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J Neurosci 23:2627–2633

    CAS  PubMed  Google Scholar 

  • Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Brain Res Rev 49:618–632

    CAS  PubMed  Google Scholar 

  • Reddy PH, Beal MF (2008) Amyloid b, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riederer P et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    CAS  PubMed  Google Scholar 

  • Rosen D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    CAS  PubMed  Google Scholar 

  • Sanlioglu S et al (2001) Lipopolysaccharide induces rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-α secretion through IKK regulation of NF-κB. J Biol Chem 32:30188–30198

    Google Scholar 

  • Santos RX et al (2010) Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning. Int J Clin Exp Pathol 3:570–581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarlette A et al (2008) Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 67:1055–1062

    CAS  PubMed  Google Scholar 

  • Sasaki S, Iwata M (1996) Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett 204:53–56

    CAS  PubMed  Google Scholar 

  • Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116:1744–1754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sayre LM et al (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    CAS  PubMed  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    PubMed  Google Scholar 

  • Schapira AH et al (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    CAS  PubMed  Google Scholar 

  • Shan X, Lin CL (2006) Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging 27:657–662

    CAS  PubMed  Google Scholar 

  • Shan X, Tashiro H, Lin CL (2003) The identification and characterization of oxidized RNAs in Alzheimer’s disease. J Neurosci 23:4913–4921

    CAS  PubMed  Google Scholar 

  • Shaw PJ et al (1995a) CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 4:209–216

    CAS  PubMed  Google Scholar 

  • Shaw PJ et al (1995b) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38:691–695

    CAS  PubMed  Google Scholar 

  • Shibata N et al (1996) Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J Neuropathol Exp Neurol 55:481–490

    CAS  PubMed  Google Scholar 

  • Shibata N et al (2001) Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 917:97–104

    CAS  PubMed  Google Scholar 

  • Siklos L et al (1996) Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol 39:203–216

    CAS  PubMed  Google Scholar 

  • Siklos L et al (1998) Intracellular calcium parallels motoneuron degeneration in SOD-1 mutant mice. J Neuropathol Exp Neurol 57:571–587

    CAS  PubMed  Google Scholar 

  • Simpson EP et al (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62:1758–1765

    CAS  PubMed  Google Scholar 

  • Spreux-Varoquaux O et al (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193:73–78

    CAS  PubMed  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    CAS  PubMed  Google Scholar 

  • Subbarao KV et al (1990) Autopsy samples of Alzheimer’s cortex show increased peroxidation in vivo. J Neurochem 55:342–345

    CAS  PubMed  Google Scholar 

  • Sun M et al (2006) Influence of heterozygosity for Parkin mutation on onset age in familial Parkinson disease: the genePD study. Arch Neurol 63:826–832

    PubMed  Google Scholar 

  • Tillement L et al (2006) The spirostenol (22R,25R)-20alpha-spirost-5-en-3beta-yl hexanoate blocks mitochondrial uptake of Abeta in neuronal cells and prevents Abeta-induced impairment of mitochondrial function. Steroids 71:725–735

    CAS  PubMed  Google Scholar 

  • Trimmer PA et al (2004) Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 88:800–812

    CAS  PubMed  Google Scholar 

  • Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19:328–334

    CAS  PubMed  Google Scholar 

  • Tumani H et al (2009) Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis 35:117–127

    CAS  PubMed  Google Scholar 

  • Usatyuk PV, Natarajan V (2012) Hydroxyalkenals and oxidized phospholipids modulation of endothelial cytoskeleton, focal adhesion and adherens junction proteins in regulating endothelial barrier function. Microvasc Res 83:45–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valdmanis PN, Rouleau GA (2008) Genetics of familial amyotrophic lateral sclerosis. Neurology 70:144–152

    PubMed  Google Scholar 

  • van Horssen J et al (2011) Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 1812:141–150

    PubMed  Google Scholar 

  • Van Meeteren ME et al (2005) Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 59:1347–1361

    PubMed  Google Scholar 

  • Venkateshappa C et al (2011) Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 37:358–369

    PubMed  Google Scholar 

  • Wang Y et al (2000) Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci 22:8305–8314

    Google Scholar 

  • Wang J et al (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962

    CAS  PubMed  Google Scholar 

  • Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 6:404–416

    CAS  PubMed  Google Scholar 

  • Weissman L et al (2007) Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res 35:5545–5555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weng YH et al (2007) PINK1 mutation in Taiwanese early-onset Parkinsonism: clinical, genetic, and dopamine transporter studies. J Neurol 254:1347–1355

    CAS  PubMed  Google Scholar 

  • Wiedemann FR et al (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 80:616–625

    CAS  PubMed  Google Scholar 

  • Williams TI et al (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 27:1094–1099

    CAS  PubMed  Google Scholar 

  • Witherick J et al (2010) Mechanisms of oxidative stress damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmun Dis 2011:1–11

    Google Scholar 

  • Wood JD, Beaujeux TP, Shaw PJ (2003) Protein aggregation in motor neurone disorders. Neuropathol Appl Neurobiol 29:529–545

    CAS  PubMed  Google Scholar 

  • Wood-Allum CA et al (2006) Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselen. Brain 129:1693–1709

    PubMed  Google Scholar 

  • Yao J et al (2011) Inhibition of amyloid-beta (Abeta) peptide binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J Neurosci 31:2313–2320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang B et al (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zipp F, Aktas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518–527

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Głąbiński M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Książek-Winiarek, D., Głąbiński, A. (2015). The Role of Oxidative Stress in Neurodegenerative Diseases. In: Dietrich-Muszalska, A., Chauhan, V., Grignon, S. (eds) Studies on Psychiatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0440-2_8

Download citation

Publish with us

Policies and ethics