Skip to main content
Log in

Association of cortical β-amyloid with erythrocyte membrane monounsaturated and saturated fatty acids in older adults at risk of dementia

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

We examined the relationships between erythrocyte membrane monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs) and cortical β-amyloid (Aβ) load in older adults reporting subjective memory complaints.

Design

This is a cross-sectional study using data from the Multidomain Alzheimer Preventive Trial (MAPT); a randomised controlled trial.

Setting

French community dwellers aged 70 or over reporting subjective memory complaints, but free from a diagnosis of clinical dementia.

Participants

Participants of this study were 61 individuals from the placebo arm of the MAPT trial with data on erythrocyte membrane fatty acid levels and cortical Aβ load.

Measurements

Cortical-to-cerebellar standard uptake value ratios were assessed using [18F] florbetapir positron emission tomography (PET). Fatty acids were measured in erythrocyte cell membranes using gas chromatography. Associations between erythrocyte membrane MUFAs and SFAs and cortical Aβ load were explored using adjusted multiple linear regression models and were considered significant at p ≤ 0.005 (10 comparisons) after correction for multiple testing.

Results

We found no significant associations between fatty acids and cortical Aβ load using multiple linear regression adjusted for age, sex, education, cognition, PET-scan to clinical assessment interval, PET-scan to blood collection interval and apolipoprotein E (ApoE) status. The association closest to significance was that between erythrocyte membrane stearic acid and Aβ (B-coefficient 0.03, 95 % CI: 0.00,0.05, p = 0.05). This association, although statistically non-significant, appeared to be stronger amongst ApoE ε4 carriers (B-coefficient 0.04, 95 % CI: -0.01,0.09, p = 0.08) compared to ApoE ε4 non-carriers (B-coefficient 0.02, 95 % CI: -0.01,0.05, p = 0.18) in age and sex stratified analysis.

Conclusion

Future research in the form of large longitudinal observational study is needed to validate our findings, particularly regarding the potential association of stearic acid with cortical Aβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Table 3
Table S1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

APP:

amyloid precursor protein

ApoE:

apolipoprotein E

Aβ:

β- amyloid

CDR:

clinical dementia rating

FAME:

Fatty acid methyl esters

IQR:

interquartile range

PET:

positron emission tomography

PUFAs:

polyunsaturated fatty acids

MAPT:

Multidomain Alzheimer Preventive Trial

MCI:

mild cognitive impairment

MMSE:

Mini Mental State Examination

SFAs:

saturated fatty acids

MUFAs:

monounsaturated fatty acids

SUVRs:

standard uptake value ratios

References

  1. Boespflug EL, McNamara RK, Eliassen JC, Schidler MD, Krikorian R. Fish Oil Supplementation Increases Event-Related Posterior Cingulate Activation in Older Adults with Subjective Memory Impairment. J Nutr Health Aging. 2016;20(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  2. Fougère B, Mazzuco S, Spagnolo P, Guyonnet S, Vellas B, Cesari M, et al. Association between the Mediterranean-style Dietary Pattern Score and Physical Performance: Results from TRELONG Study. J Nutr Health Aging. 2016;20(4):415–9.

    Article  PubMed  Google Scholar 

  3. Lehtisalo J, Lindström J, Ngandu T, Kivipelto M, Ahtiluoto S, Ilanne-Parikka P, et al. Association of Long-Term Dietary Fat Intake, Exercise, and Weight with Later Cognitive Function in the Finnish Diabetes Prevention Study. J Nutr Health Aging. 2016;20(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  4. Limongi F, Noale M, Gesmundo A, Crepaldi G, Maggi S. Adherence to the Mediterranean Diet and All-Cause Mortality Risk in an Elderly Italian Population: Data from the ILSA Study. J Nutr Health Aging. 2017;21(5):505–13.

    Article  CAS  PubMed  Google Scholar 

  5. Oksman M, Iivonen H, Hogyes E, Amtul Z, Penke B, Leenders I, et al. Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol Dis. 2006;23(3):563–72.

    Article  CAS  PubMed  Google Scholar 

  6. Amtul Z, Westaway D, Cechetto DF, Rozmahel RF. Oleic acid ameliorates amyloidosis in cellular and mouse models of Alzheimer’s disease. Brain Pathol Zurich Switz. 2011;21(3):321–9.

    Article  CAS  Google Scholar 

  7. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, et al. Dietary fats and the risk of incident Alzheimer disease. Arch Neurol. 2003;60(2):194–200.

    Article  PubMed  Google Scholar 

  8. Laitinen MH, Ngandu T, Rovio S, Helkala E-L, Uusitalo U, Viitanen M, et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord. 2006;22(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  9. Eskelinen MH, Ngandu T, Helkala E-L, Tuomilehto J, Nissinen A, Soininen H, et al. Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int J Geriatr Psychiatry. 2008;23(7):741–7.

    Article  PubMed  Google Scholar 

  10. Okereke OI, Rosner BA, Kim DH, Kang JH, Cook NR, Manson JE, et al. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann Neurol. 2012;72(1):124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;10;256(5054):184–5.

    Article  Google Scholar 

  12. Vellas B, Carrie I, Gillette-Guyonnet S, Touchon J, Dantoine T, Dartigues JF, et al. Mapt study: A Multidomain approach for preventing Alzheimer’s disease: Design and baseline data. J Prev Alzheimers Dis. 2014;1(1):13–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Del Campo N, Payoux P, Djilali A, Delrieu J, Hoogendijk EO, Rolland Y, et al. Relationship of regional brain β-amyloid to gait speed. Neurology. 2016;5;86(1):36–43.

    Article  Google Scholar 

  14. Joshi AD, Pontecorvo MJ, Clark CM, Carpenter AP, Jennings DL, Sadowsky CH, et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects. J Nucl Med Off Publ Soc Nucl Med. 2012;53(3):378–84.

    CAS  Google Scholar 

  15. Legrand P, Schmitt B, Mourot J, Catheline D, Chesneau G, Mireaux M, et al. The consumption of food products from linseed-fed animals maintains erythrocyte omega-3 fatty acids in obese humans. Lipids. 2010;45(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci Off J Soc Neurosci. 2005;23;25(12):3032–40.

    Article  Google Scholar 

  17. Perez SE, Berg BM, Moore KA, He B, Counts SE, Fritz JJ, et al. DHA diet reduces AD pathology in young APPswe/PS1 Delta E9 transgenic mice: possible gender effects. J Neurosci Res. 2010;88(5):1026–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement J Alzheimers Assoc. 2016;12(4):459–509.

    Article  Google Scholar 

  19. Deyts C, Thinakaran G, Parent AT. APP Receptor? To Be or Not To Be. Trends Pharmacol Sci. 2016;37(5):390–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang X, Sheng W, Sun GY, Lee JC-M. Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochem Int. 2011;58(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  21. Patil S, Chan C. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons. Neurosci Lett. 2005;26;384(3):288–93.

    Article  Google Scholar 

  22. Goux WJ, Rodriguez S, Sparkman DR. Analysis of the core components of Alzheimer paired helical filaments. A gas chromatography/mass spectrometry characterization of fatty acids, carbohydrates and long-chain bases. FEBS Lett. 1995;5;366(1):81–5.

    Article  Google Scholar 

  23. Heude B, Ducimetière P, Berr C, EVA Study. Cognitive decline and fatty acid composition of erythrocyte membranes—The EVA Study. Am J Clin Nutr. 2003;77(4):803–8.

    Article  CAS  PubMed  Google Scholar 

  24. White B. Dietary fatty acids. Am Fam Physician. 2009;15;80(4):345–50.

    Google Scholar 

  25. Chouinard-Watkins R, Plourde M. Fatty acid metabolism in carriers of apolipoprotein E epsilon 4 allele: is it contributing to higher risk of cognitive decline and coronary heart disease? Nutrients. 2014;6(10):4452–71.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Claudie Hooper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooper, C., de Souto Barreto, P., Payoux, P. et al. Association of cortical β-amyloid with erythrocyte membrane monounsaturated and saturated fatty acids in older adults at risk of dementia. J Nutr Health Aging 21, 1170–1175 (2017). https://doi.org/10.1007/s12603-017-0975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-017-0975-3

Key words

Navigation