Skip to main content
Log in

Cross-sectional associations of total plasma homocysteine with cortical β-amyloid independently and as a function of omega 3 polyunsaturated fatty acid status in older adults at risk of dementia

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Elevated total plasma homocysteine is a risk factor for Alzheimer’s disease (AD) and there is some evidence that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can modulate the effects of homocysteine-lowering B vitamins on AD related pathologies. Hence we investigated the relationship between total plasma homocysteine and cortical β-amyloid (Aβ) in older adults at risk of dementia. The role of erythrocyte membrane n-3 PUFAs (omega 3 index) on this relationship was also explored.

Design

This is a cross-sectional study using data from the Multidomain Alzheimer Preventive Trial (MAPT); a randomised controlled trial.

Setting

French community dwellers aged 70 or over reporting subjective memory complaints, but free from a diagnosis of clinical dementia.

Participants

Individuals were from the MAPT trial (n = 177) with data on total plasma homocysteine at baseline and cortical Aβ load.

Measurements

Cortical-to-cerebellar standard uptake value ratios were assessed using [18F] florbetapir positron emission tomography (PET). Total baseline plasma homocysteine was measured using an enzymatic cycling assay. Baseline omega 3 index was measured using gas chromatography. Cross-sectional associations were explored using adjusted multiple linear regression models.

Results

We found that total baseline plasma homocysteine was not significantly associated with cortical Aβ as demonstrated using multiple linear regression models adjusted for age, sex, education, cognitive status, time interval between baseline and PET-scan, omega-3 index, MAPT group allocation and Apolipoprotein E ε4 status (B-coefficient -0.001, 95 % CI: -0.008,0.006, p = 0.838). Exploratory analysis showed that homocysteine was however significantly associated with cortical Aβ in subjects with low baseline omega-3 index (< 4.72 %) after adjustment for Apolipoprotein E ε4 status (B-coefficient 0.041, 95 % CI: 0.017,0.066, p = 0.005, n = 10), but not in subjects with a high baseline omega-3 index (B-coefficient -0.010, 95 % CI: -0.023,0.003, p = 0.132, n = 66).

Conclusions

The role of n-3 PUFAs on the relationship between homocysteine and cerebral Aβ warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Table 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ApoE:

apolipoprotein E

Aβ:

β-amyloid

CDR:

clinical dementia rating

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

FAME:

Fatty acid methyl esters

Hcy:

homocysteine

PET:

positron emission tomography

PUFAs:

polyunsaturated fatty acids

MAPT:

Multidomain Alzheimer Preventive Trial

MCI:

mild cognitive impairment

MMSE:

Mini Mental State Examination

n-3 PUFA:

omega-3 polyunsaturated fatty acids

SUVRs:

standard uptake value ratios

References

  1. Smith AD, Refsum H. Homocysteine, B Vitamins, and Cognitive Impairment. Annu Rev Nutr. 2016 Jul 17;36:211–39.

    Article  CAS  PubMed  Google Scholar 

  2. Oulhaj A, Refsum H, Beaumont H, Williams J, King E, Jacoby R, et al. Homocysteine as a predictor of cognitive decline in Alzheimer’s disease. Int J Geriatr Psychiatry. 2010 Jan;25(1):82–90.

    PubMed  Google Scholar 

  3. Hogervorst E, Ribeiro HM, Molyneux A, Budge M, Smith AD. Plasma homocysteine levels, cerebrovascular risk factors, and cerebral white matter changes (leukoaraiosis) in patients with Alzheimer disease. Arch Neurol. 2002 May;59(5):787–93.

    Article  PubMed  Google Scholar 

  4. Vermeer SE, van Dijk EJ, Koudstaal PJ, Oudkerk M, Hofman A, Clarke R, et al. Homocysteine, silent brain infarcts, and white matter lesions: The Rotterdam Scan Study. Ann Neurol. 2002 Mar;51(3):285–9.

    Article  CAS  PubMed  Google Scholar 

  5. den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, et al. Homocysteine and brain atrophy on MRI of non-demented elderly. Brain J Neurol. 2003 Jan;126(Pt 1):170–5.

    Article  Google Scholar 

  6. Sachdev PS, Valenzuela M, Wang XL, Looi JCL, Brodaty H. Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology. 2002 May 28;58(10):1539–41.

    Article  CAS  PubMed  Google Scholar 

  7. Hooshmand B, Polvikoski T, Kivipelto M, Tanskanen M, Myllykangas L, Erkinjuntti T, et al. Plasma homocysteine, Alzheimer and cerebrovascular pathology: a population-based autopsy study. Brain J Neurol. 2013 Sep;136(Pt 9):2707–16.

    Article  Google Scholar 

  8. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002 Feb 14;346(7):476–83.

    Article  CAS  PubMed  Google Scholar 

  9. Zylberstein DE, Lissner L, Björkelund C, Mehlig K, Thelle DS, Gustafson D, et al. Midlife homocysteine and late-life dementia in women. A prospective population study. Neurobiol Aging. 2011 Mar;32(3):380–6.

    Article  CAS  PubMed  Google Scholar 

  10. Zhuo J-M, Portugal GS, Kruger WD, Wang H, Gould TJ, Pratico D. Diet-induced hyperhomocysteinemia increases amyloid-beta formation and deposition in a mouse model of Alzheimer’s disease. Curr Alzheimer Res. 2010 Mar;7(2):140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pacheco-Quinto J, Rodriguez de Turco EB, DeRosa S, Howard A, Cruz-Sanchez F, Sambamurti K, et al. Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid beta peptide levels. Neurobiol Dis. 2006 Jun;22(3):651–6.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang C-E, Wei W, Liu Y-H, Peng J-H, Tian Q, Liu G-P, et al. Hyperhomocysteinemia increases beta-amyloid by enhancing expression of gammasecretase and phosphorylation of amyloid precursor protein in rat brain. Am J Pathol. 2009 Apr;174(4):1481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Popp J, Lewczuk P, Linnebank M, Cvetanovska G, Smulders Y, Kölsch H, et al. Homocysteine metabolism and cerebrospinal fluid markers for Alzheimer’s disease. J Alzheimers Dis JAD. 2009;18(4):819–28.

    Article  CAS  PubMed  Google Scholar 

  14. Luchsinger JA, Tang M-X, Miller J, Green R, Mehta PD, Mayeux R. Relation of plasma homocysteine to plasma amyloid beta levels. Neurochem Res. 2007 May;32(4–5):775–81.

    Article  CAS  PubMed  Google Scholar 

  15. Irizarry MC, Gurol ME, Raju S, Diaz-Arrastia R, Locascio JJ, Tennis M, et al. Association of homocysteine with plasma amyloid beta protein in aging and neurodegenerative disease. Neurology. 2005 Nov 8;65(9):1402–8.

    Article  CAS  PubMed  Google Scholar 

  16. Oikonomidi A, Lewczuk P, Kornhuber J, Smulders Y, Linnebank M, Semmler A, et al. Homocysteine metabolism is associated with cerebrospinal fluid levels of soluble amyloid precursor protein and amyloid beta. J Neurochem. 2016 Oct;139(2):324–32.

    Article  CAS  PubMed  Google Scholar 

  17. Burnham SC, Faux NG, Wilson W, Laws SM, Ames D, Bedo J, et al. A blood-based predictor for neocortical Aβ burden in Alzheimer’s disease: results from the AIBL study. Mol Psychiatry. 2014 Apr;19(4):519–26.

    Article  CAS  PubMed  Google Scholar 

  18. Huang T, Zheng J, Chen Y, Yang B, Wahlqvist ML, Li D. High consumption of Ω-3 polyunsaturated fatty acids decrease plasma homocysteine: a meta-analysis of randomized, placebo-controlled trials. Nutr Burbank Los Angel Cty Calif. 2011 Sep;27(9):863–7.

    Article  CAS  Google Scholar 

  19. Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. 2015 Jul;102(1):215–21.

    Article  PubMed  Google Scholar 

  20. Oulhaj A, Jernerén F, Refsum H, Smith AD, de Jager CA. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment. J Alzheimers Dis JAD. 2016;50(2):547–57.

    Article  CAS  PubMed  Google Scholar 

  21. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991 Oct;12(10):383–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992 Apr 10;256(5054):184–5.

    Article  CAS  PubMed  Google Scholar 

  23. Vellas B, Carrie I, Gillette-Guyonnet S, Touchon J, Dantoine T, Dartigues JF, et al. MAPT study: A multidomain approach for preventing Alzheimer’s DISEASE: DESIGN AND BASELINE DATA. J Prev Alzheimers Dis. 2014 Jun;1(1):13–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Andrieu S, Guyonnet S, Coley N, Cantet C, Bonnefoy M, Bordes S, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol. 2017 Mar 27

    Google Scholar 

  25. Del Campo N, Payoux P, Djilali A, Delrieu J, Hoogendijk EO, Rolland Y, et al. Relationship of regional brain β-amyloid to gait speed. Neurology. 2016 Jan 5;86(1):36–43.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Joshi AD, Pontecorvo MJ, Clark CM, Carpenter AP, Jennings DL, Sadowsky CH, et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects. J Nucl Med Off Publ Soc Nucl Med. 2012 Mar;53(3):378–84.

    CAS  Google Scholar 

  27. Dou C, Xia D, Zhang L, Chen X, Flores P, Datta A, et al. Development of a novel enzymatic cycling assay for total homocysteine. Clin Chem. 2005 Oct;51(10):1987–9.

    Article  CAS  PubMed  Google Scholar 

  28. Legrand P, Schmitt B, Mourot J, Catheline D, Chesneau G, Mireaux M, et al. The consumption of food products from linseed-fed animals maintains erythrocyte omega- 3 fatty acids in obese humans. Lipids. 2010 Jan;45(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  29. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement J Alzheimers Assoc. 2016 Apr;12(4):459–509.

    Article  Google Scholar 

  30. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015 Jan 10;14:6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fleisher AS, Chen K, Liu X, Roontiva A, Thiyyagura P, Ayutyanont N, et al. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol. 2011 Nov;68(11):1404–11.

    Article  PubMed  Google Scholar 

  32. Hooper C, De Souto Barreto P, Payoux P, Salabert AS, Guyonnet S, Andrieu S, et al. Cross-sectional associations of cortical β-amyloid with erythrocyte membrane longchain polyunsaturated fatty acids in older adults with subjective memory complaints. J Neurochem. 2017 May 3; 142, 589–596.

    Article  CAS  PubMed  Google Scholar 

  33. Li D, Mann NJ, Sinclair AJ. A significant inverse relationship between concentrations of plasma homocysteine and phospholipid docosahexaenoic acid in healthy male subjects. Lipids. 2006 Jan;41(1):85–9.

    Article  CAS  PubMed  Google Scholar 

  34. Miller RR, Leanza CM, Phillips EE, Blacquire KD. Homocysteine-induced changes in brain membrane composition correlate with increased brain caspase-3 activities and reduced chick embryo viability. Comp Biochem Physiol B Biochem Mol Biol. 2003 Nov;136(3):521–32.

    Article  PubMed  Google Scholar 

  35. van Wijk N, Watkins CJ, Hageman RJJ, Sijben JCW, Kamphuis PGHJ, Wurtman RJ, et al. Combined dietary folate, vitamin B-12, and vitamin B-6 intake influences plasma docosahexaenoic acid concentration in rats. Nutr Metab. 2012 May 30;9(1):49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Claudie Hooper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooper, C., de Souto Barreto, P., Coley, N. et al. Cross-sectional associations of total plasma homocysteine with cortical β-amyloid independently and as a function of omega 3 polyunsaturated fatty acid status in older adults at risk of dementia. J Nutr Health Aging 21, 1075–1080 (2017). https://doi.org/10.1007/s12603-017-0989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-017-0989-x

Key words

Navigation