Skip to main content

Advertisement

Log in

Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The interest on novel biological preservation methods has been increasing during recent years, supported by research indicating that antagonistic microorganisms and their antimicrobial metabolites may have some potential use as natural preservatives as a way not only to control the growth but also to inactivate undesired microorganisms in food. Biopreservation using lactic acid bacteria (LAB) and/or their antimicrobial metabolites represents an alternative for improving food safety. These antimicrobial properties of LAB were derived from competition for nutrients and the production of one or more antimicrobial active metabolites such as organic acids (mainly lactic and acetic acid), hydrogen peroxide and also other compounds, such as bacteriocins and antifungal peptides. The important contribution of probiotic LAB in food preservation has been attracting much attention because of the nutritional qualities of the raw material through an extended shelf life of food and their ability to inhibit spoilage and foodborne pathogens, which is interesting for the food industry. In this review, we compiled the available data on the commonly used preservative and present the current knowledge regarding the antimicrobial compounds, especially bacteriocins, the mechanisms of the action and recent applications of antimicrobial compounds in food. The use of competitive microbiota as a biotechnological tool for food preservation may lead to improve the optimization and quality assurance of food products while at the same time retaining the sensory qualities of the product such as color, flavor, texture and nutritional value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abo-Amer AE (2007) Molecular characterization of antimicrobial compound produced by Lactobacillus acidophilus AA11. Acta Microbiol Immunol Hung 54:107–119

    Article  CAS  Google Scholar 

  2. Abd El-Salam MH, Saleh FA, Kholif AM, El-Sayed EM, Abdou SM, El-Shibiny S (2004) Isolation and characterization of bacteriocins produced by Bifidobacterium lactis BB-12 and Bifidobacterium longum BB-46. In: 9th Egyptian conference for dairy science and technology, Cairo, Egypt

  3. Abriouel H, Herrmann A, Stärke J, Yousif NMK, Wijaya A, Tauscher B, Holzapfel W, Franz CMAP (2004) Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microbiol 70:603–606

    Article  CAS  Google Scholar 

  4. Ahmed Z, Wang Y, Cheng Q, Imran M (2010) Lactobacillus acidophilus bacteriocin, from production to their application: An overview. Afr J Biotechnol 9:2843–2850

    CAS  Google Scholar 

  5. Albano H, Oliveira M, Aroso R, Cubero N, Hogg T, Teixeira P (2007) Antilisterial activity of lactic acid bacteria isolated from “Alheiras” (traditional Portuguese fermented sausages): In situ assays. Meat Sci 76:796–800

    Article  CAS  Google Scholar 

  6. Al-Holy MA, Al-Nabulsi A, Osaili TM, Ayyash MM, Shaker RR (2012) Inactivation of Listeria innocua in brined white cheese by a combination of nisin and heat. Food Control 23:48–53

    Article  CAS  Google Scholar 

  7. Alvarado C, García-Almendéz BE, Martin SE, Regalado C (2005) Anti-Listeria monocytogenes bacteriocin-like inhibitory substances from Enterococcus faecium UQ31 isolated from artisan Mexican-style cheese. Curr Microbiol 51:110–115

    Article  CAS  Google Scholar 

  8. Alves VF, Martinez RCR, Lavrador MAS, De Martinis ECP (2006) Antilisterial activity of lactic acid bacteria inoculated on cooked ham. Meat Sci 74:623–627

    Article  CAS  Google Scholar 

  9. Ammor MS, Dufour E, Zagorec M, Chaillou SI, Chevallier I (2005) Characterization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures. Food Microbiol 22:529–538

    Article  CAS  Google Scholar 

  10. Ammor MS, Mayo B (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat Sci 76:138–146

    Article  CAS  Google Scholar 

  11. Annou S, Gálvez A, Bueno MM, Maqueda M, Valdivia E (2005) Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. J Appl Microbiol 99:1364–1372

    Article  CAS  Google Scholar 

  12. Annou S, Maqueta M, Martínez-Bueno M, Valdivia E (2007) Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Appl Microbiol 1:475–486

    Google Scholar 

  13. Annou S, Valdivia E, Bueno MM, Gálvez A, Maqueda M (2004) Effect of combined physico-chemical preservatives on enterocin AS-48 activity against the enterotoxigenic Staphylococcus aureus CECT 976 strain. J Appl Microbiol 97:48–56

    Article  CAS  Google Scholar 

  14. Arauz LJ, Jozala AF, Mazzola PG, Penna TCV (2009) Nisin biotechnological production and application: a review. Trends Food Sc Technol 20:146–154

    Article  CAS  Google Scholar 

  15. Aslim B, Yuksekdaga ZN, Sarikayab E, Beyatli Y (2005) Determination of the bacteriocin-like substances produced by some lactic acid bacteria isolated from Turkish dairy products. Food Sci Technol 38:691–694

    CAS  Google Scholar 

  16. Atanassova M, Choiset Y, Dalgalarromdo M, Chobert JM, Dousset X, Ivanova I, Haertlé T (2003) Isolation and partial biochemical characterization of a proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. paracasei strain M3. Int J Food Microbiol 87:63–73

    Article  CAS  Google Scholar 

  17. Ávila M, Calzada J, Garde S, Nuñez M (2007) Lipolysis of semi-hard cheese made with a lacticin 481-producing Lactococcus lactis strain and a Lactobacillus helveticus strain. Lait 87:575–585

    Article  CAS  Google Scholar 

  18. Barbosa MS (2009) Avaliação da ação dos ingredientes da matriz alimentar na atividade antilisteria das bacteriocinas produzidas por Lactobacillus sakei subsp. sakei 2a. [Dissertation (Masters Degree)—Faculdade de Ciências Farmacêuticas, Universidade de São Paulo]

  19. Benech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I (2002) Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 68:3683–3690

    Article  CAS  Google Scholar 

  20. Breuer B, Radler F (1996) Inducible resistance against nisin in Lactobacillus casei. Arch Microbiol 165:114–118

    Article  CAS  Google Scholar 

  21. Bromberg R, Moreno I, Delboni RR, Cintra HC (2006) Características da bacteriocina produzida por Lactococcus lactis ssp. hordniae CTC 484 e seu efeito sobre Listeria monocytogenes em carne bovina. Ciênc Tecnol Aliment 26:135–144

    Article  CAS  Google Scholar 

  22. Brul S, Coote P (1999) Preservative agents in foods mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17

    Article  CAS  Google Scholar 

  23. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  24. Cheikhyoussef A, Pogori N, Chen HQ, Tian FW, Chen W, Tang J (2009) Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (BLIS) produced by Bifidobacterium infantis BCRC 14602. Food Contr 20:553–559

    Article  CAS  Google Scholar 

  25. Cheikhyoussef A, Pogori N, Chen HQ, Zhao JX, Tang J, Chen W (2009) Comparison of three different methods for the isolation of bacteriocin-like inhibitory substances (BLIS) from Bifidobacterium infantis BCRC 14602. J Rapid Meth Automat Microbiol 17:182–194

    Article  CAS  Google Scholar 

  26. Cheikhyoussef A, Cheikhyoussef N, Chen H, Zhao J, Tang J, Zhang H, Chen W (2010) Bifidin I—a new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence. Food Contr 21:746–753

    Article  CAS  Google Scholar 

  27. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  28. D’Angelis CEM, Polizello ACM, Nonato MC, Spadaro ACC, De Martinis ECP (2008) Purification, characterization and n-terminal amino acid sequencing of sakacin 1, a bacteriocin produced by Lactobacillus sakei 1. J Food Saf 29:636–649

    Article  CAS  Google Scholar 

  29. Dahiya RS, Speck ML (1968) Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J Dairy Sci 51:1569–1572

    Article  Google Scholar 

  30. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  31. Davidson PM, Sofos JN, Branen AL (2005) Antimicrobials in food. CRC Press, Boca Raton

    Book  Google Scholar 

  32. De Martinis ECP (2002) Identification of meat isolated bacteriocin-producing lactic acid bacteria using biotyping and ribotyping. Arq Bra Med Vet Zootec 54:659–661

    Article  Google Scholar 

  33. De Martinis ECP, Alves VF, Franco BDGM (2002) Aplicação de bactérias láticas e suas bacteriocinas para a garantia da segurança microbiológica de alimentos. Biotecnol Ciênc Desenv 29:114–119

    Google Scholar 

  34. De Martinis ECP, Públio MRP, Santarosa PR, Freitas FZ (2001) Antilisterial activity of lactic acid bacteria isolated from vacuum-packaged Brazilian meat and meat products. Braz J Microbiol 32:32–37

    Article  Google Scholar 

  35. De Martinis ECP, Santarosa PR, Freitas FZ (2003) Caracterização preliminar de bacteriocinas produzidas por seis cepas de bactérias láticas isoladas de produtos cárneos embalados a vácuo. Ciênc Tecnol Aliment 23:195–199

    Article  Google Scholar 

  36. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199

    Article  CAS  Google Scholar 

  37. Delgado A, Brito D, Peres C, Noé-Arroyo F, Garrido-Fernández A (2005) Bacteriocin production by Lactobacillus pentosus B96 can be expressed as a function of temperature and NaCl concentration. Food Microbiol 22:521–528

    Article  CAS  Google Scholar 

  38. De Martinis ECP, Franco BDGM (1998) Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int J Food Microbiol 42:119–126

    Article  CAS  Google Scholar 

  39. Deraz SF, Karlsson EN, Khalil AA, Mattiasson B (2007) Mode of action of acidocin D20079, a bacteriocin produced by the potential probiotic strain, Lactobacillus acidophilus DSM 20079. J Ind Microbiol Biotechnol 34:373–379

    Article  CAS  Google Scholar 

  40. Devi SM, Halami PM (2011) Detection and characterization of pediocin PA-1/AcH like bacteriocin producing lactic acid bacteria. Curr Microbiol 63:181–185

    Article  CAS  Google Scholar 

  41. Devlieghere F, Vermeiren L, Debevere J (2004) New preservation technologies: possibilities and limitations. Int Dairy J 14:273–285

    Article  Google Scholar 

  42. Doan CH, Davidson PM (2000) Microbiology of potatoes and potato products: a review. J Food Prot 63:668–683

    CAS  Google Scholar 

  43. Dufour A, Hindré T, Haras D, Pennec JP (2007) The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 31:134–167

    Article  CAS  Google Scholar 

  44. Ercolini D, La Storia A, Villani F, Mauriello G (2006) Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J Appl Microbiol 100:765–772

    Article  CAS  Google Scholar 

  45. Ferchichi M, Frère J, Mabrouk K, Manai M (2001) Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiol 205:49–55

    Article  CAS  Google Scholar 

  46. Fimland G, Johnsen AL, Dalhusb AB, Nissen-Meyera J (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Peptide Sci 11:688–696

    Article  CAS  Google Scholar 

  47. FAO/WHO (2002) Food and Agriculture Organization of the United Nations, FAO, World Health Organization, WHO, Guidelines for the evaluation of probiotics in food (2002)

  48. Franz CMAP, Van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310

    Article  CAS  Google Scholar 

  49. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–549

    Article  CAS  Google Scholar 

  50. Gálvez A, Abriouel H, Benomar N, Lucas R (2010) Microbial antagonists to foodborne pathogens and biocontrol. Curr Biotechnol 21:1–7

    Article  CAS  Google Scholar 

  51. Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  CAS  Google Scholar 

  52. Gálvez A, López RL, Abriouel H, Valdivia E, Omar NB (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28:125–152

    Article  CAS  Google Scholar 

  53. Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64:326–332

    Article  CAS  Google Scholar 

  54. Gänzle MG, Vogel RF (2003) Studies on the mode of action of reutericyclin. Appl Environment Microbiol 69:1305–1307

    Article  CAS  Google Scholar 

  55. Gao YL, Ju XR (2008) Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores. J Microbiol Meth 72:20–28

    Article  CAS  Google Scholar 

  56. Garmiene G, Salomskiene J, Jaseitiene I, Macioniere I, Miliauskiene I (2010) Production of benzoic acid by lactic acid bacteria from Lactobacillus, Lactococcus and Streptococcus genera in milk. Milchwissenschaft 65:295–298

    CAS  Google Scholar 

  57. Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84:577–592

    Article  CAS  Google Scholar 

  58. Gong HS, Meng XC, Wang H (2010) Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from ‘‘Jiaoke”, a traditional fermented cream from China. Food Control 21:89–96

    Article  CAS  Google Scholar 

  59. Greenacre EJ, Brocklehurst TF (2006) The acetic acid tolerance response induces cross-protection to salt stress in Salmonella typhimurium. Int J Food Microbiol 112:62–65

    Article  CAS  Google Scholar 

  60. Gulahmadov SGO, Batdorj B, Dalgalarrondo M, Chobert JM, Kuliev AA, Haertlé T (2006) Characterization of bacteriocin-like inhibitory substances (BLIS) from lactic acid bacteria isolated from traditional Azerbaijani cheeses. Euro Food Res Technol 224:229–235

    Article  CAS  Google Scholar 

  61. Harris LJ, Daeschel MA, Stiles ME, Klaenhammer TR (1989) Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J Food Prot 52:384–387

    Google Scholar 

  62. Harris LJ, Fleming HP, Klaenhammer TR (1992) Developments in nisin research. Food Res Int 25:57–66

    Article  CAS  Google Scholar 

  63. Hechard Y, Sahl HG (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochim 84:545–557

    Article  CAS  Google Scholar 

  64. Heng NCK, Tagg JR (2006) What’s in a name? Class distinction for bacteriocins. Nat Rev Microbiol 4:2

    Article  CAS  Google Scholar 

  65. Holck A, Axelsson L, Birkeland SE, Aukrust T, Blom H (1992) Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sakei Lb706. J Gen Microbiol 138:2715–2720

    CAS  Google Scholar 

  66. Holzapfel WH (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol 75:197–212

    Article  CAS  Google Scholar 

  67. Hurst A (1978) Nisin: its preservative effect and function in the growth cycle of the producer organism. Soc Appl Bacteriol Symp Ser 7:297–314

    CAS  Google Scholar 

  68. Izquierdo E, Marchioni E, Aoude-Werner D, Hasselmann C, Ennahar S (2009) Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol 26:16–20

    Article  CAS  Google Scholar 

  69. Iwatani S, Zendo T, Yoneyama F, Nakayama J, Sonomoto K (2007) Characterization and structure analysis of a novel bacteriocin, Lacticin Z, produced by Lactococcus lactis QU 14. Biosci Biotechnol Biochem 71:1984–1992

    Article  CAS  Google Scholar 

  70. Jamuna M, Babusha ST, Jeevaratnam K (2005) Inhibitory efficacy of nisin and bacteriocins from Lactobacillus isolates against food spoilage and pathogenic organisms in model and food systems. Food Microbiol 22:449–454

    Article  CAS  Google Scholar 

  71. Jamuna M, Jeevaratnam K (2004) Isolation and characterization of lactobacilli from some traditional fermented foods and evaluation of the bacteriocins. J Gen Appl Microbiol 50:79–90

    Article  CAS  Google Scholar 

  72. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  CAS  Google Scholar 

  73. Juven BJ, Pierson MD (1996) Antibacterial effects of hydrogen peroxide and methods for its detection and quantification. J Food Prot 59:1233–1241

    CAS  Google Scholar 

  74. Khan H, Flint S, Yu PK (2010) Enterocins in food preservation. Int J Food Microbiol 141:1–10

    Article  CAS  Google Scholar 

  75. Kjems E (1955) Studies on streptococcal bacteriophages: I techniques for isolating phage producing strains. Pathol Microbiol Scand 36:433–440

    Article  CAS  Google Scholar 

  76. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86

    CAS  Google Scholar 

  77. Klaenhammer TR (1998) Funcional activities of Lactobacillus probiotics: genetic mandate. Int Dairy J 8:497–505

    Article  CAS  Google Scholar 

  78. Kleerebezem M (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptide 25:1405–1414

    CAS  Google Scholar 

  79. Kleerebezem M, Vaughan EE (2009) Probiotic and gut Lactobacilli and Bifidobacteria: molecular approaches to study diversity and activity. Ann Rev Microbiol 63:269–290

    Article  CAS  Google Scholar 

  80. Kos B, Suskovic J, Beganovic J, Gjuracic K, Frece J, Iannaccone C, Canganella F (2008) Characterization of the three selected probiotic strains for the application in food industry. World J Microbiol Biotechnol 24:699–707

    Article  CAS  Google Scholar 

  81. Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LMT (2005) Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against gram-positive and gram-negative bacteria. Int J Food Microbiol 105:433–444

    Article  CAS  Google Scholar 

  82. Laridi R, Kheadr EE, Benech RO, Vuillemard JC, Lacroix C, Fliss I (2003) Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J 13:325–336

    Article  CAS  Google Scholar 

  83. Lauková A, Czikkova S (1999) Inhibition of Listeria monocytogenes and Staphylococcus aureus by enterocin CCM 4231 in milk products. Food Microbiol 16:93–99

    Article  Google Scholar 

  84. Leal-Sánchez MV, Jiménez-Díaz R, Maldonado-Barragán A, Garrido-Fernández A, Ruiz-Barba JL (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl Environ Microbiol 68:4465–4471

    Article  CAS  Google Scholar 

  85. LeBlanc JG, Laiño JE, Juárez VM, Vannini V, Van Sinderen D, Taranto MP, Font VG, Savoy GG, Sesma F (2011) B-Group vitamin production by lactic acid bacteria—current knowledge and potential applications. J Appl Microbiol 111:1297–1309

    Article  CAS  Google Scholar 

  86. Lee SY, Kang DH (2009) Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media. Food Control 20:1006–1012

    Article  CAS  Google Scholar 

  87. Leistner L (1995) In: Gould GW (ed) New methods of food preservation. Blackie Academic, London

    Google Scholar 

  88. Leistner L (2000) Basic aspects of food preservation by hurdle technology. Int J Food Microbiol 55:181–186

    Article  CAS  Google Scholar 

  89. Leistner L, Gorris LGM (1995) Food preservation by hurdle technology. Food Sci Technol 6:41–46

    Article  CAS  Google Scholar 

  90. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78

    Article  CAS  Google Scholar 

  91. Liu L, O’Conner P, Cotter PD, Hill C, Ross RP (2008) Controlling Listeria monocytogenes in Cottage cheese through heterologous production of enterocin A by Lactococcus lactis. J Appl Microbiol 104:1059–1066

    Article  CAS  Google Scholar 

  92. Lozo J, Jovcic B, Kojic M, Dalgalarrondo M, Chobert JM, Haertle T, Topisirovic L (2007) Molecular characterization of a novel bacteriocin and an unusually large aggregation factor of Lactobacillus paracasei subsp. paracasei BGSJ2-8, a natural isolate from homemade cheese. Curr Microbiol 55:266–271

    Article  CAS  Google Scholar 

  93. Madureira AR, Pintado ME, Gomes AMP, Malcata FX (2011) Incorporation of probiotic bacteria in whey cheese: decreasing the risk of microbial contamination. J Food Protect 74:1194–1199

    Article  CAS  Google Scholar 

  94. Magnuson JK, Lasure LL (2004) In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer Academic Plenum Publishers, New York

    Google Scholar 

  95. Manolopoulou E, Sarantinopoulos P, Zoidou E, Aktypis A, Moschopoulou E, Kandarakis IG, Anifantakis EM (2003) Evolution of microbial populations during traditional Feta cheese manufacture and ripening. Int J Food Microbiol 82:153–161

    Article  Google Scholar 

  96. Máqueza JG, Rojas CEG (2007) Efecto de la nisina sobre la microflora patógena del queso blanco artesanal tipo “telita” elaborado en una quesera de Upata, Estado Bolívar, Venezuela. Rev Soc Venez Microbiol 27:108–111

    Google Scholar 

  97. Martínez B, Rodríguez A (2005) Antimicrobial susceptibility of nisin resistant Listeria monocytogenes of dairy origin. FEMS Microbiol Lett 252:67–72

    Article  CAS  Google Scholar 

  98. Martínez-Cuesta MC, Bengoechea J, Bustos I, Rodríguez B, Requena T, Peláez C (2010) Control of late blowing in cheese by adding lacticin 3147-producing Lactococcus lactis IFPL 3593 to the starter. Int Dairy J 20:18–24

    Article  CAS  Google Scholar 

  99. Mattick ATR, Hirsch A (1947) Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 2:5–7

    Article  CAS  Google Scholar 

  100. Mauriello G, Ercolini D, La Storia A, Casaburi A, Villani F (2004) Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J Appl Microbiol 97:314–322

    Article  CAS  Google Scholar 

  101. Mcauliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P, Abee T (1998) Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64:439–445

    CAS  Google Scholar 

  102. Meghrous J, Lacroix C, Bouksaim M, Lapointe G, Simard R (1997) Genetic and biochemical characterization of nisin Z produced by Lactococcus lactis subsp. lactis biovar. diacetylactis UL719. J Appl Microbiol 83:133–138

    Article  CAS  Google Scholar 

  103. Messens W, De Vuyst L (2002) Inhibitory substances produced by lactobacilli isolated from sourdoughs—a review. Int J Food Microbiol 72:31–43

    Article  CAS  Google Scholar 

  104. Mitra S, Chakrabartty PK, Biswas SR (2010) Potential production and preservation of dahi by Lactococcus lactis W8, a nisin-producing strain. Food Sc Technol 43:337–342

    CAS  Google Scholar 

  105. Moll NG, Konings NW, Driessen MJA (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Ant Leeuw 76:185–198

    Article  CAS  Google Scholar 

  106. Muñoz A, Maqueda M, Gálvez A, Martínez-Bueno M, Rodríguez A, Valdivia E (2004) Biocontrol of psychrotrophic enterotoxigenic Bacillus cereus in a nonfat hard cheese by an enterococcal strain-producing enterocin AS-48. J Food Prot 67:1517–1521

    Google Scholar 

  107. Muñoz A, Ananou S, Gálvez A, Martínez-Bueno M, Rodríguez A, Maqueda M, Valdivia E (2007) Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: bactericidal synergism with heat. Int Dairy J 17:760–769

    Article  CAS  Google Scholar 

  108. Muriana PM, Klaenhammer TR (1991) Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol 57:114–121

    CAS  Google Scholar 

  109. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Ant Leeuw 70:113–128

    Article  CAS  Google Scholar 

  110. Nes IF, Johnsborg O (2004) Exploration of antimicrobial potential in LAB by genomics. Curr Opin Biotechnol 15:100–104

    Article  CAS  Google Scholar 

  111. Neysens P, De Vuyst L (2005) Carbon dioxide stimulates the production of amylovorin L by Lactobacillus amylovorus DCE 471, while enhanced aeration causes biphasic kinetics of growth and bacteriocin production. Int J Food Microbiol 105:191–202

    Article  CAS  Google Scholar 

  112. Neysens P, Messens W, De Vuyst L (2003) Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471. Int J Food Microbiol 88:29–39

    Article  CAS  Google Scholar 

  113. Nilsen T, Nes IF, Holo H (1998) An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J Bacteriol 180:1848–1854

    CAS  Google Scholar 

  114. Oda Y, Saito K, Yamauchi H, Mori M (2002) Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Curr Microbiol 45:1–4

    Article  CAS  Google Scholar 

  115. Oh S, Kim SH, Worobo RW (2000) Characterization and purification of a bacteriocin produced by a potential probiotic culture Lactobacillus acidophilus 30SC. J Dairy Sci 83:2747–2752

    Article  CAS  Google Scholar 

  116. Oliveira RBP, Oliveira AL, Glória MBA (2008) Screening of lactic acid bacteria from vacuum packaged beef for antimicrobial activity. Braz J Microbiol 39:368–374

    Article  Google Scholar 

  117. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Brazilian Arch Biol Technol 50:521–542

    CAS  Google Scholar 

  118. Peláez AML, Cataño CAS, Yepes EAQ, Villarroela RRG, De Antoni GLD, Giannuzzi L (2012) Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control 24:177–183

    Article  CAS  Google Scholar 

  119. Ray B (2004) Fundamental food microbiology. CRC Press, Boca Raton

    Google Scholar 

  120. Riley MA, Chavan MA (2007) Bacteriocins: ecology and evolution. Springer, New York

    Book  Google Scholar 

  121. Robertson A, Tirado C, Lobstein T, Jermini M, Knai C, Jensen JH, Ferro-Luzzi A, James WPT (2004) Food and health in Europe: a new basis for action. European Series, WHO Regional Publications, Geneva

  122. Rodríguez JM, Martínez MI, Horn N, Dodd HM (2003) Heterologous production of bacteriocins by lactic acid bacteria. Int J Food Microbiol 80:101–116

    Article  Google Scholar 

  123. Rodríguez JM, Martínez MI, Kok J (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Cr Rev Food Sci Nutr 42:91–121

    Article  Google Scholar 

  124. Ruiz-Moyano S, Martín A, Benito MJ, Casquete R, Serradilla MJ, Córdoba MG (2009) Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages. Meat Sci 83:460–467

    Article  CAS  Google Scholar 

  125. Salminen S, Von Wright A, Ouwehand A (2004) Lactic acid bacteria: microbiological and functional aspects. Marcel Dekker, New York

    Book  Google Scholar 

  126. Samelis J, Roller S, Metaxopoulos J (1994) Sakacin B, a bacteriocin produced by Lactobacillus sakei isolated from Greek dry fermented sausages. J Appl Microbiol 76:475–486

    Article  CAS  Google Scholar 

  127. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trend Biotechnol 26:100–108

    Article  CAS  Google Scholar 

  128. Savadogo A, Cheik ATO, Imael HNB, Traore SA (2006) Bacteriocins and lactic acid bacteria - a mini review. Afr J Biotechnol 5:678–683

    CAS  Google Scholar 

  129. Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trend Food Sci Technol 7:158–164

    Article  CAS  Google Scholar 

  130. Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sakei isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  Google Scholar 

  131. Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trend Food Sci Technol 16:70–78

    Article  CAS  Google Scholar 

  132. Sengun IY, Karabiyikli S (2011) Importance of acetic acid bacteria in food industry. Food Control 22:647–656

    Article  CAS  Google Scholar 

  133. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138

    Article  CAS  Google Scholar 

  134. Simon L, Fremaux C, Cenatiempo Y, Berjeaud JM (2002) Sakacin G, a new type of antilisterial bacteriocin. Appl Environment Microbiol 68:6416–6420

    Article  CAS  Google Scholar 

  135. Sobrino OJ, Rodriguez JM, Moreira WL, Cintas LM, Fernadez MF, Sanz B, Hernandez PE (1992) Sakacin M, a bacteriocin-like substance from Lactobacillus sake 148. Int J Food Microbiol 16:215–225

    Article  CAS  Google Scholar 

  136. Sobrino-Lopez A, Martín-Belloso O (2008) Review: use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 18:329–343

    Article  CAS  Google Scholar 

  137. Soomro AH, Masud T, Anwaar K (2002) Role of lactic acid bacteria (LAB) in food preservation and human health—a review. Pak J Nutr 1:20–24

    Article  Google Scholar 

  138. Stiles ME (1996) Biopreservation by lactic acid bacteria. Ant Leeuw 70:331–345

    Article  CAS  Google Scholar 

  139. Suomalainen TH, Mäyrä-Mäkinen AM (1999) Propionic acid bacteria as protective cultures in fermented milks and breads. Lait 79:165–174

    Article  CAS  Google Scholar 

  140. Tamime AY (2005) Probiotic dairy products. Blackwell, Oxford

    Google Scholar 

  141. Thomas LV, Ingram RE, Bevis HE, Davies EA, Milne CF, Delves-Broughton J (2002) Effective use of nisin to control Bacillus and Clostridium spoilage of a pasteurized mashed potato product. J Food Prot 65:1580–1585

    CAS  Google Scholar 

  142. Todorov S, Onno B, Sorokine O, Chobert JM, Ivanova I, Dousset X (1999) Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST 31 isolated from sourdough. Int J Food Microbiol 48:167–177

    Article  CAS  Google Scholar 

  143. Todorov SD, Furtado DN, Saad SMI, Tome E, Franco BDGM (2011) Potential beneficial properties of bacteriocin-producing lactic acid bacteria isolated from smoked salmon. J Appl Microbiol 110:971–986

    Google Scholar 

  144. Todorov SD, Prévost H, Lebois M, Dousset X, LeBlanc JG, Franco BDGM (2011) Bacteriocinogenic Lactobacillus plantarum ST16 Pa isolated from papaya (Carica papaya)—from isolation to application: characterization of a bacteriocin. Food Res Int 44:1351–1363

    Article  CAS  Google Scholar 

  145. Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LMT, Franco BDGM, Vaz-Velho M, Drider D (2010) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27:869–879

    Article  CAS  Google Scholar 

  146. Tungjaroenchai W, White CH, Holmes WE, Drake MA (2004) Influence of adjunct cultures on volatile free fatty acids in reduced fat Edam cheeses. J Dairy Sci 87:3224–3234

    Article  CAS  Google Scholar 

  147. Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML (2007) Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol 62:191–234

    Article  CAS  Google Scholar 

  148. Twomey D, Ross RP, Ryan M, Meaney B, Hill C (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Ant Leeuw 82:165–185

    Article  CAS  Google Scholar 

  149. Van den Berghe E, Skourtas G, Tsakalidou E, De Vuyst L (2006) Streptococcus macedonicus ACA-DC 198 produces the lantibiotic, macedocin, at temperature and pH conditions that prevail during cheese manufacture. Int J Food Microbiol 107:138–147

    Article  CAS  Google Scholar 

  150. Vasiljevic T, Shah NP (2008) Probiotics—from metchnikoff to bioactives. Int Dairy J 18:714–728

    Article  CAS  Google Scholar 

  151. Vaughan A, Eijsink VG, Van Sinderen D (2003) Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol 69:7194–7203

    Article  CAS  Google Scholar 

  152. Vermeulen A, Gysemans KPM, Bernaerts K, Geeraerd AH, Van Impe JF, Debevere J, Devlieghere F (2007) Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 °C: data collection for the development of a growth/no growth model. Int J Food Microbiol 114:332–341

    Article  CAS  Google Scholar 

  153. Vincent JG, Veomett RC, Riley RF (1959) Antibacterial activity associated with Lactobacillus acidophilus. J Bacteriol 78:477–484

    CAS  Google Scholar 

  154. Wee YJ, Kimm JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  155. Whitehead HA (1933) A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. Biochemic J 27:1793–1800

    CAS  Google Scholar 

  156. Winkowski K, Ludescher RD, Montville TJ (1996) Physiochemical characterization of the nisin-membrane interaction with liposomes derived from Listeria monocytogenes. Appl Env Microbiol 62:323–327

    CAS  Google Scholar 

  157. Yildirim Z, Winters DK, Johnson MG (1999) Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J Appl Microbiol 86:45–54

    Article  CAS  Google Scholar 

  158. Zhou XXL, Li WF, Ma GX, Pan YJ (2006) The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv 24:285–295

    Article  CAS  Google Scholar 

  159. Zouhir A, Kheadr E, Fliss I, Hamida JB (2011) Partial purification and characterization of two bacteriocin-like inhibitory substances produced by bifidobacteria. Afr J Microbiol Res 4:411–418

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Conselho Nacional de Pesquisa and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. B. Penna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, J.A., Paula, A.T., Casarotti, S.N. et al. Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Eng Rev 4, 124–140 (2012). https://doi.org/10.1007/s12393-012-9051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-012-9051-2

Keywords

Navigation