Skip to main content

Advertisement

Log in

Probiotic Bile Salt Hydrolase: Current Developments and Perspectives

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Probiotic has modernized the current dietetic sense with novel therapeutic and nutritional benefits to the consumers. The presence of bile salt hydrolase (BSH) in probiotics renders them more tolerant to bile salts, which also helps to reduce the blood cholesterol level of the host. This review focuses on the occurrence of bile salt hydrolase among probiotics and its characterization, importance, applications, and genetics involved with recent updates. Research on bile salt hydrolase is still in its infancy. The current perspective reveals a huge market potential of probiotics with bile salt hydrolase. Intensive research in this field is desired to resolve some of the lacunae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carey, M. C., & Duane, W. C. (1994). In I. M. Arias, N. Boyer, N. Fausto, W. B. Jackoby, D. A. Schachter & D. A. Shafritz (Eds.), Enterohepatic circulation. The liver: Biology and pathobiology (pp. 719–738). New York: Raven.

    Google Scholar 

  2. Hofmann, A. F. (1994). In I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jackoby, D. A. Schachter & D. A. Shafritz (Eds.), Bile acids. The liver: Biology and pathobiology (pp. 677–718). New York: Raven.

    Google Scholar 

  3. Bahar, R. J., & Andrew, S. (1999). Bile acid transport. Gastroenterology Clinics of North America, 28, 27–58.

    CAS  Google Scholar 

  4. Batta, A. K., Salen, G., Arora, R., Shefer, S., Batta, M., & Perseon, A. (1990). Side chain conjugation prevents bacterial 7α-dehydroxylation of bile acids. The Journal of Biological Chemistry, 265, 10925–10928.

    CAS  Google Scholar 

  5. Wang, K. Y., Li, S. N., Liu, C. S., Perng, D. S., Su, Y. C., & Wu, D. C. (2004). Effects if ingesting Lactobacillus and Bifidobacterium containing yogurt in subjects with colonized Helicobacter pylori. The American Journal of Clinical Nutrition, 80, 737–741.

    CAS  Google Scholar 

  6. Cruchet, S., Obregon, M. C., Salazar, G., Diaz, E., & Gotteland, M. (2003). Effect of the ingestion of a dietary product containing Lactobacillus johnsonii La1 on Helicobacter pylori colonization in children. Nutrition, 19, 716–721.

    Google Scholar 

  7. Macedo, R. F., Freitas, R. J. S., Pandey, A., & Soccol, C. R. (1999). Production and shelf-life studies of low cost beverage with soymilk, buffalo cheese whey and cow milk fermented by mixed cultures of Lactobacillus casei ssp. shirota and Bifidobacterium adolescentis. Journal of Basic Microbiology, 39(4), 243–251.

    CAS  Google Scholar 

  8. de Reque, E. F., Pandey, A., Franco, S. G., & Soccol, C. R. (2000). Isolation, identification and physiological study of Lactobacillus fermentum LPB for use as probiotics in chickens. Review of Microbiology, 31, 303–307.

    Google Scholar 

  9. Weizman, Z., Asli, G., & Alsheikh, A. (2005). Effect of a probiotics infant formula on infections in child care centers: comparison of two probiotics agents. Pediatrics, 115, 5–9.

    Google Scholar 

  10. O’Mahony, L., McCarthy, J., Kelly, P., Hurley, G., Luo, F., Chen, K., et al. (2005). Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology, 128, 541–551.

    Google Scholar 

  11. Reid, G., & Bruce, A. W. (2006). Probiotics to prevent urinary tract infections: the rationale and evidence. World Journal of Urology, 24, 28–32.

    Google Scholar 

  12. Tromm, A., Niewerth, U., Khoury, M., Baestlein, E., Wilhelms, G., Schulze, J., et al. (1917). The probiotics E. coli strain Nissle 1917 for the treatment of collagenous colitis: first results of an open-label trial. Zeitschrift fur Gastroenterologie, 42, 365–369.

    Google Scholar 

  13. Chung, C. H., & Day, D. F. (2004). Efficacy of Leuconostoc mesenteroides ATCC 13146 iso-malto-oligosaccharides as poultry prebiotic. Poultry Science, 8, 1302–1306.

    Google Scholar 

  14. Park, J. H., Seok, S. H., Cho, S. A., Baek, M. W., Lee, H. Y., Kim, D. J., et al. (2005). Antimicrobial effect of lactic acid producing bacteria culture condensate mixture (LCCM) against Salmonella enteritidis. International Journal of Food Microbiology, 101, 111–117.

    Google Scholar 

  15. Kurugol, Z., & Koturoglu, G. (2005). Effects of Saccharomyces boulardii in children with acute diarrhoea. Acta Paediatrica, 94, 44–47.

    CAS  Google Scholar 

  16. Hoa, T. T., Duc, L. H., Isticato, R., Baccigalupi, L., Ricca, E., Van, P. H., et al. (2001). Fate and dissemination of Bacillus subtilis spores in a murine model. Applied and Environmental Microbiology, 67, 3819–3823.

    CAS  Google Scholar 

  17. Patel, A. K., Ahire, J. J., Pawar, S. P., Chaudhari, B. L., & Chincholkar, S. B. (2009). Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wastes. Food Research International, 42, 505–510.

    CAS  Google Scholar 

  18. Patel, A. K., Deshattiwar, M., Chaudhari, B. L., & Chincholkar, S. B. (2009). Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresource Technology, 100, 368–373.

    CAS  Google Scholar 

  19. Patel, A. K., Ahire, J. J., Pawar, S. P., Chaudhari, B. L., Shouche, Y. S., & Chincholkar, S. B. (2009). Evaluation of probiotic characteristics of siderophoregenic Bacillus spp. isolated from dairy waste. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-009-8583-2

  20. Burton, J. P., Wescombe, P. A., Moore, C. J., Chilcott, C. N., & Tagg, J. R. (2006). Safety assessment of the oral cavity probiotics Streptococcus salivarius K12. Applied and Environmental Microbiology, 72, 3050–3053.

    CAS  Google Scholar 

  21. Prado, F. C., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Research International, 41, 111–123.

    CAS  Google Scholar 

  22. Bujalance, C., Moreno, E., Jimenez-Valera, M., & Ruiz-Bravo, A. (2007). A probiotics strain of Lactobacillus plantarum stimulates lymphocyte responses in immunologically intact and immunocompromised mice. International Journal of Food Microbiology, 113, 28–34.

    CAS  Google Scholar 

  23. Famularo, G., De Simone, C., Pandey, V., Sahu, A. R., & Minisola, G. (2005). Probiotics lactobacilli: an innovative tool to correct the mal-absorption syndrome of vegetarians?. Medical Hypotheses, 65(6), 1132–1135.

    Google Scholar 

  24. Yamano, T., Tanida, M., Niijima, A., Maeda, K., Okumura, N., Fukushima, Y., et al. (2006). Effects of the probiotics strain Lactobacillus johnsonii strain La1 on autonomic nerves and blood glucose in rats. Life Science, 79, 1963–1967.

    CAS  Google Scholar 

  25. Sanders, M. E. (2000). Considerations for use of probiotics bacteria to modulate human health. The Journal of Nutrition, 130, 384S–390S.

    CAS  Google Scholar 

  26. Kirjavainen, P. V., Salminen, S. J., & Isolauri, E. (2003). Probiotics bacteria in the management of atopic disease: underscoring the importance of viability. Journal of Pediatric Gastroenterology and Nutrition, 36, 223–227.

    Google Scholar 

  27. Kalliomaki, M., Salminen, S., Poussa, T., Arvilommi, H., & Isolauri, E. (2003). Probiotics and prevention of atopic disease: 4-year follow-up of a randomized placebo-controlled trial. Lancet, 361, 1869–1871.

    Google Scholar 

  28. Reid, G., Jass, J., Sebulsky, M. T., & McCormick, J. K. (2003). Potential uses of probiotics in clinical practice. Clinical Microbiology Reviews, 16, 658–672.

    Google Scholar 

  29. Kim, D. H., & Austin, B. (2006). Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics. Veterinary Immunology and Immunopathology, 114, 297–304.

    CAS  Google Scholar 

  30. Grangette, C., Muller-Alouf, H., Goudercourt, D., Geoffroy, M., Turneer, M., & Mercenier, A. (2001). Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum. Infection and Immunity, 69, 1547–1553.

    CAS  Google Scholar 

  31. Brady, L. J., Gallaher, D. D., & Busta, F. F. (2000). The role of probiotic cultures in the prevention of colon cancer. The Journal of Nutrition, 130, 410S–414S.

    CAS  Google Scholar 

  32. Hamilton-Miller, J. M. T. (2003). The role of probiotics in the treatment and prevention of Helicobacter pylori infection. International Journal of Antimicrobial Agents, 22, 360–366.

    CAS  Google Scholar 

  33. Xu, J., Bjursell, M. K., Himrod, J., Deng, S., Carmichael, L. K., Chiang, H. C., et al. (2003). A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science, 299, 2074–2076.

    CAS  Google Scholar 

  34. Masco, L., Crockaert, C., Van Hoorde, K., Swings, J., & Huys, G. (2007). In vitro assessment of the gastrointestinal transit tolerance of taxonomic reference strains from human origin and probiotic product isolates of Bifidobacterium. Journal of Dairy Science, 90, 3572–3578.

    CAS  Google Scholar 

  35. Kim, G. B., & Lee, B. H. (2008). Genetic analysis of a bile salt hydrolase in Bifidobacterium animalis subsp. lactis KL61. Journal of Applied Microbiology, 105(3), 778–790.

    CAS  Google Scholar 

  36. Dethlefsen, L., McFall-Ngai, M., & Relman, D. A. (2007). An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature, 449, 811–818.

    CAS  Google Scholar 

  37. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M., & Marchesi, J. R. (2008). Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. PNAS, 105(36), 13580–13585.

    CAS  Google Scholar 

  38. Baron, S. F., & Hylemon, P. B. (1997). In R. I. Mackie & B. A. White (Eds.), Biotransformation of bile acids, cholesterol, and steroid hormones, Vol. I: Gastrointestinal microbiology: Gastrointestinal ecosystems and fermentations (pp. 470–510). New York: Thompson.

    Google Scholar 

  39. Oh, H. K., Lee, J. Y., Lim, S. J., Kim, M. J., Kim, G. B., Kim, J. H., et al. (2008). Molecular cloning and characterization of a bile salt hydrolase from Lactobacillus acidophilus PF01. Journal of Microbiology and Biotechnology, 18(3), 449–456.

    CAS  Google Scholar 

  40. Kim, G. B., Yi, S. H., & Lee, B. H. (2004). Purification and characterization of three different types of bile salt hydrolase from Bifidobacterium strains. Journal of Dairy Science, 87, 258–266.

    CAS  Google Scholar 

  41. Tanaka, H., Hashiba, H., Kok, J., & Mierau, I. (2000). Bile salt hydrolase of Bifidobacterium longum: biochemical and genetic characterization. Applied and Environmental Microbiology, 66, 2502–2512.

    CAS  Google Scholar 

  42. Moser, S. A., & Savage, D. C. (2001). Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Applied and Environmental Microbiology, 67, 3476–3480.

    CAS  Google Scholar 

  43. Mc Auliffe, O., Cano, R. J., & Klaenhammer, T. R. (2005). Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 71, 4925–4929.

    CAS  Google Scholar 

  44. Bron, P. A., Molenaar, D., De Vos, W. M., & Kleerebezem, M. (2006). DNA micro-array based identification of bile-responsive genes in Lactobacillus plantarum. Journal of Applied Microbiology, 100(4), 728–738.

    CAS  Google Scholar 

  45. Kumar, R. S., Brannigan, J. A., Prabhune, A. A., Pundle, A. V., Dodson, G. G., Dodson, E. J., et al. (2006). Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin v acylase. The Journal of Biological Chemistry, 281, 32516–32525.

    CAS  Google Scholar 

  46. Rossocha, M., Schultz-Heienbrok, R., von Moeller, H., Coleman, J. P., & Saenger, W. (2005). Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemistry, 44, 5739–5748.

    CAS  Google Scholar 

  47. Elkins, E. A., & Savage, D. C. (1998). Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100–100. Journal of Bacteriology, 180, 4344–4349.

    CAS  Google Scholar 

  48. Begley, M., Hill, C., & Gahan, C. G. M. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72(3), 1729–1738.

    CAS  Google Scholar 

  49. Kim, G. B., Brochet, M., & Lee, B. H. (2005). Cloning and characterization of a bile salt hydrolase (bsh) from Bifidobacterium adolescentis. Biotechnology Letters, 27, 817–822.

    CAS  Google Scholar 

  50. Grill, J. P., Cayuela, C., Antoine, J. M., & Schneider, F. (2000). Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance. Journal of Applied Microbiology, 89, 553–563.

    CAS  Google Scholar 

  51. Kawamoto, K., Horibe, I., & Uchida, K. (1989). Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxy-1736, Mini review. Appl. Environ. Microbiol. Cholyltaurine hydrolase from Bacteroides vulgatus. Journal of Biochemistry, 106, 1049–1053.

    CAS  Google Scholar 

  52. Sridevi, N., Srivastava, S., Khan, B. M., & Prabhune, A. (2009). Characterization of the smallest dimeric bile salt hydrolase from a thermophile Brevibacillus sp. Extremophiles, 13(2), 363–370.

    CAS  Google Scholar 

  53. Ha, C. G., Cho, J. K., Chai, Y. G., Ha, Y. A., & Shin, S. H. (2006). Purification and characterization of bile salt hydrolase from Lactobacillus plantarum CK102. Journal of Microbiology and Biotechnology, 16(7), 1047–1052.

    CAS  Google Scholar 

  54. Sridevi, N., Vishwe, P., & Prabhune, A. (2009). Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005. Food Research International, 42(4), 516–520.

    CAS  Google Scholar 

  55. Lambert, J. M., Weinbreck, F., & Kleerebezem, M. (2008). In vitro analysis of protection of the enzyme bile salt hydrolase against enteric conditions by whey protein-gum arabic microencapsulation. Journal of Agricultural and Food Chemistry, 56, 8360–8364.

    CAS  Google Scholar 

  56. Martoni, C., Bhathena, J., Urbanska, A. M., & Prakash, S. (2008). Micro-encapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract. Applied Microbiology and Biotechnology, 81, 225–233.

    CAS  Google Scholar 

  57. Begley, M., Sleator, R. D., Gahan, C. G., & Hill, C. (2005). Contribution of three bile-associated loci, bsh, pva, and. btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infection and Immunity, 73, 894–904.

    CAS  Google Scholar 

  58. De Smet, I., Hoorde, V. L., Woestyne, V. M., Christiaens, H., & Verstraete, W. (1995). Significance of bile salt hydrolytic activities of lactobacilli. J Appl Bacteriol, 79, 292–301.

    Google Scholar 

  59. Elkins, C. A., Moser, S. A., & Savage, D. C. (2001). Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100–100 and other Lactobacillus species. Microbiology, 147, 3403–3412.

    CAS  Google Scholar 

  60. Tanaka, H., Doesburg, K., Iwasaki, T., & Mierau, I. (1999). Screening of lactic acid bacteria for bile salt hydrolase activity. Journal of Dairy Science, 82, 2530–2535.

    CAS  Google Scholar 

  61. Lim, H. J., Kim, S. Y., & Lee, W. K. (2004). Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use. Journal of veterinary science, 5(4), 391–395.

    Google Scholar 

  62. Schillinger, U., Guigas, C., & Holzapfel, W. H. (2005). In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int Dairy J, 15(12), 1289–1297.

    CAS  Google Scholar 

  63. Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., & Tsakalidou, E. (2006). Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J, 16(3), 189–199.

    CAS  Google Scholar 

  64. Kim, G. B., Miyamoto, C. M., Meighen, E. A., & Lee, B. H. (2004). Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Applied and Environmental Microbiology, 70, 5603–5612.

    CAS  Google Scholar 

  65. Franz, C. M. A. P., Specht, I., Haberer, P., & Holzapfel, W. H. (2001). Bile salt hydrolase activity of enterococci isolated from food: screening and quantitative determination. Journal of Food Protection, 64, 725–729.

    CAS  Google Scholar 

  66. Knarreborg, A., Engberg, R. M., Jensen, S. K., & Jensen, B. B. (2002). Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Applied and Environmental Microbiology, 68, 6425–6428.

    CAS  Google Scholar 

  67. Wijaya, A., Hermann, A., Abriouel, H., Specht, I., Yousif, N. M., Holzapfel, W. H., et al. (2004). Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E-345 and chromosomal location of bsh genes in food enterococci. Journal of Food Protection, 67, 2772–2778.

    CAS  Google Scholar 

  68. Ahn, Y. T., Kim, G. B., Lim, Y. S., Baek, Y. J., & Kim, Y. U. (2003). Deconjugation of bile salts by Lactobacillus acidophilus isolates. Int Dairy J, 13, 303–311.

    CAS  Google Scholar 

  69. Tannock, G. W., Dashkevicz, M. P., & Feighner, S. D. (1989). Lactobacilli and bile salt hydrolase in the murine intestinal tract. Applied and Environmental Microbiology, 55(7), 1848–1851.

    CAS  Google Scholar 

  70. Yoon, M. Y., Kim, Y. J., & Hwang, H. J. (2008). Properties and safety aspects of Enterococcus faecium strains isolated from Chungkukjang, a fermented soy product. Food Sci Technol, 41(5), 925–933.

    CAS  Google Scholar 

  71. Sridevi, N., & Prabhune, A. A. (2009). Source for the production of bile salt hydrolase. Biotechnology, 1–9.

  72. Lambert, J. M., Bongers, R. S., de Vos, W. M., & Kleerebezem, M. (2008). Functional analysis of four bile salt hydrolase and penicillin v acylase family members in Lactobacillus plantarum WCFS1. Applied and Environmental Microbiology, 74(15), 4719–4726.

    CAS  Google Scholar 

  73. Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P., et al. (2002). Listeria monocytogenes bile salt hydrolase is a virulence factor involved in the intestinal and hepatic phases of listeriosis. Molecular Microbiology, 45, 1095–1106.

    CAS  Google Scholar 

  74. Dashkevicz, M. P., & Feighner, S. D. (1989). Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Applied and Environmental Microbiology, 55, 11–16.

    CAS  Google Scholar 

  75. Rossi, F., Capodaglio, A., & Dellaglio, F. (2008). Genetic modification of Lactobacillus plantarum by heterologous gene integration in a not functional region of the chromosome. Applied Microbiology and Biotechnology, 80(1), 79–86.

    CAS  Google Scholar 

  76. Sudhamani, M., Ismaiel, E., Geis, A., Batish, V., & Heller, K. J. (2008). Characterisation of pSMA23, a 3.5 kbp plasmid of Lactobacillus casei, and application for heterologous expression in Lactobacillus. Plasmid, 59(1), 11–19.

    CAS  Google Scholar 

  77. Kumar, R. S., Suresh, C. G., Brannigan, J. A., Dodson, G. G., & Gaikwad, S. M. (2007). Bile salt hydrolase, the member of Ntn- hydrolase family: Differential modes of structural and functional transitions during denaturation. IUBMB Life, 59(2), 118–125.

    CAS  Google Scholar 

  78. Taranto, M. P., Medici, M., Perdigon, G., Ruiz Holgado, A. P., & Valdez, G. F. (1998). Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice. Journal of Dairy Science, 81, 2336–2340.

    Article  CAS  Google Scholar 

  79. Du Toit, M., Franz, C. M., Dicks, L. M., Schillinger, U., Harberer, P., Warlies, B., et al. (1998). Characterization and selection of probiotic lactobacilli for a preliminary mini-pig feeding trial and their effect on serum cholesterol levels, feces pH, and feces moisture content. International Journal of Food Microbiology, 40, 93–104.

    Google Scholar 

  80. Ha, C. G., Cho, J. K., Lee, C. H., Chai, Y. G., Ha, Y. A., & Shin, S. H. (2006). Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. Journal of Microbiology and Biotechnology, 16(8), 1201–1209.

    CAS  Google Scholar 

  81. Kim, G. B., & Lee, B. H. (2005). Biochemical and molecular insights into bile salt hydrolase in the gastrointestinal microflora. Asian-Aus J Anim Sci, 18(10), 1505–1512.

    CAS  Google Scholar 

  82. Kim, Y., Whang, J. Y., Whang, K. Y., Oh, S., & Kim, S. H. (2008). Characterization of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121. Bioscience, Biotechnology, and Biochemistry, 72(6), 1483–1490.

    CAS  Google Scholar 

  83. Nguyen, T. D. T., Kang, J. H., & Lee, M. S. (2007). Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology, 113, 358–361.

    CAS  Google Scholar 

  84. Mathara, J. M., Schillinger, U., Guigas, C., Franz, C., Kutima, P. M., Mbugua, S. K., et al. (2008). Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. International Journal of Food Microbiology, 126(12), 57–64.

    CAS  Google Scholar 

  85. Van Eldere, J., Celis, P., De Pauw, G., Lesaffre, E., & Eyssen, H. (1996). Tauroconjugation of cholic acid stimulates 7α-dehydroxylation by fecal bacteria. Applied and Environmental Microbiology, 62, 656–661.

    Google Scholar 

  86. Peschel, A. (2002). How do bacteria resist human antimicrobial peptides? Trends in Microbiology, 10, 179–186.

    CAS  Google Scholar 

  87. Taranto, M. P., Sesma, F., Ruiz Holgado, A. P., & Font de Valdez, G. (1997). Bile salt hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri. Biotechnology Letters, 19, 845–847.

    CAS  Google Scholar 

  88. Taranto, M. P., Fernandez Murga, M. L., Lorca, G., & Font de Valdez, G. (2003). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. Journal of Applied Microbiology, 95, 86–91.

    CAS  Google Scholar 

  89. Boggs, J. M. (1987). Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochimica et Biophysica Acta, 906, 353–404.

    CAS  Google Scholar 

  90. Noriega, L., Cuevas, I., Margolles, A., & de los Reyes-Gavilan, C. G. (2006). Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Int Dairy J, 16, 850–855.

    CAS  Google Scholar 

  91. Martoni, C., Bhathena, J., Jones, M. L., Urbanska, A. M., Chen, H., & Prakash, S. (2007). Investigation of microencapsulated BSH active Lactobacillus in the simulated human GI tract. J Biomed Biotechnol. art. no. 13684.

  92. Kurdi, P., Tanaka, H., van Veen, H. W., Asano, K., Tomita, F., & Yokota, A. (2003). Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria. Microbiology, 149, 2031–2037.

    CAS  Google Scholar 

  93. Coleman, J. P., White, W. B., Lijewski, M., & Hylemon, P. B. (1988). Nucleotide sequence and regulation of a gene involved in bile acid 7α-dehydroxylation by Eubacterium sp. strain VPI 12708. Journal of Bacteriology, 170, 2070–2077.

    CAS  Google Scholar 

  94. Wells, J. E., & Hylemon, P. B. (2000). Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Applied and Environmental Microbiology, 66, 1107–1113.

    CAS  Google Scholar 

  95. Madsen, V. A., Brown, V. R., Grimes, S. M., Poppe, C. H., Anderson, J. D., Davis, J. C., et al. (1976). Effect of inelastic coupling on 0+ analog transitions. Physical Review C, 13, 548–555.

    CAS  Google Scholar 

  96. Eyssen, H., & De Somer, P. (1963). The mode of action of antibiotics in stimulating growth of chicks. The Journal of Experimental Medicine, 117, 127–138.

    CAS  Google Scholar 

  97. De Somer, P., Eyssen, H., & Evard, E. (1963). In A. C. Frazer (Ed.), The influence of antibiotics on fecal fats in chickens. Biochemical problems of lipids (pp. 84–90). Amsterdam: Elsevier/North Holland.

    Google Scholar 

  98. Eyssen, H. (1973). Role of the gut microflora in metabolism of lipids and sterols. The Proceedings of the Nutrition Society, 32, 59–63.

    CAS  Google Scholar 

  99. Eyssen, H., & De Somer, P. (1963). Effect of antibiotics on growth and nutrients absorption of chicks. Poultry Science, 42, 1373.

    Google Scholar 

  100. Feighner, S. D., & Dashkevicz, M. P. (1987). Sub-therapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Applied and Environmental Microbiology, 53(2), 331–336.

    CAS  Google Scholar 

  101. Feighner, S. D., & Dashkevicz, M. P. (1988). Effect of dietary carbohydrates on bacterial cholyltaurine hydrolase in poultry intestinal homogenates. Applied and Environmental Microbiology, 54(2), 337–342.

    CAS  Google Scholar 

  102. Fuller, R., Cole, C. B., & Coates, M. E. (1984). The role of Streptococcus faecium in antibiotic-relieved growth depression of chickens. British Poultry Science, 395–403.

  103. Ridlon, J. M., Kang, D. J., & Hylemon, P. B. (2006). Bile salt bio-transformations by human intestinal bacteria. Journal of Lipid Research, 47, 241–259.

    CAS  Google Scholar 

  104. Bernstein, C., Bernstein, H., Payne, C. M., Dvorakova, K., & Garewal, H. (2005). Bile acids as carcinogens in human gastrointestinal cancers. Mutation Research, 589, 47–65.

    CAS  Google Scholar 

  105. Pazzi, P., Puriani, A. C., Dalla Libera, M., Guerra, G., Rici, D., Gullini, S., et al. (1997). Bile salt-induced cytotoxicity and ursodeoxycholate cytoprotection: in vitro study in perfused rat hepatocytes. European Journal of Gastroenterology & Hepatology, 9, 703–709.

    CAS  Google Scholar 

  106. Berr, F., Kullak-Ublick, G. A., Paumgartner, G., Munzing, W., & Hylemon, P. B. (1996). 7α-Dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology, 111, 1611–1620.

    CAS  Google Scholar 

  107. Mamianett, A., Garrido, D., Carducci, C. N., & Vescina, M. C. (1999). Fecal bile acid excretion pattern profile in gallstone patients. Medicina, 59, 269–273.

    Google Scholar 

  108. Masuda, N. (1981). Deconjugation of bile salts by Bacteroids and Clostridium. Microbiology and Immunology, 25(1), 1–11.

    CAS  Google Scholar 

  109. Lepercq, P., Relano, P., Cayuela, C., & Juste, C. (2004). Bifidobacterium animalis strain DN-173010 hydrolyses bile salt in the gastrointestinal tract of pigs. Scandinavian Journal of Gastroenterology, 39(12), 1266–1271.

    CAS  Google Scholar 

  110. Corzo, G., & Gilliland, S. E. (1999). Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. Journal of Dairy Science, 82(3), 472–480.

    Article  CAS  Google Scholar 

  111. Zoumpopoulou, G., Foligne, B., Christodoulou, K., Grangette, C., Pot, B., & Tsakalidou, E. (2008). Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. International Journal of Food Microbiology, 121(1), 18–26.

    CAS  Google Scholar 

  112. Delpino, M. V., Marchesini, M. I., Estein, S. M., Comerci, D. J., Cassataro, J., Fossati, C. A., et al. (2007). A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infection and Immunity, 75, 299–305.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A.K., Singhania, R.R., Pandey, A. et al. Probiotic Bile Salt Hydrolase: Current Developments and Perspectives. Appl Biochem Biotechnol 162, 166–180 (2010). https://doi.org/10.1007/s12010-009-8738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8738-1

Keywords

Navigation