Skip to main content

Ecology of Probiotics and Enteric Protection

  • Chapter
  • First Online:
Probiotic Bacteria and Enteric Infections

Abstract

Insight into the diversity and function of the human gut microbiota has been gained through recent studies with probiotic bacteria that exhibit specific functions positively affecting our health, such as immunomodulation. Initial efforts have been centered on establishing scientific support for the efficacy of some probiotic bacteria, mainly Lactobacillus and Bifidobacterium species, for prevention of enteric infection. Following these evidence-based functional approaches, considerable research is focused on elucidation of mechanisms of action of particular probiotic bacteria. Different probiotic strains vary in their ability to protect the host from enteric pathogen interactions and, the efficient dose, frequency and duration of the probiotic consumption required in different population groups remain to be determined. The taxonomy of probiotics, in relation to their functional physiology and their potential for enteric protection will be discussed in this chapter. A special focus is placed on recent in vitro and in vivo assessments of particular probiotics for inhibition of enteric pathogens using gut fermentation models, cellular tests, animal and human trials. Finally, mechanisms that contribute to the inhibition of pathogens in the gut environment will be addressed through intestinal epithelial cell models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BLIS:

Bacteriocin-like inhibitory substance

CFU:

Colony forming unit

FOS:

Fructooligosaccharides

GI:

Gastrointestinal

GRAS:

Generally recognized as safe

IBS:

Irritable bowel syndrome

IFN:

Interferon

IgA:

Immunoglobulin A

IL:

Interleukin

LAB:

Lactic acid bacteria

LGG:

Lactobacillus rhamnosus GG

MIC:

Minimal inhibitory concentration

NF-κB:

Nuclear factor-κB

SHIME:

Simulator of the human intestinal microbial ecosystem

SCFA:

Short chain fatty acid

TEER:

Transepithelial electrical resistance

TNF:

Tumour necrosis factor

References

  • Abe F, Muto M, Yaeshima T, Iwatsuki K, Aihara H, Ohashi Y, Fujisawa T (2009) Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe 16(2):131–136

    Article  PubMed  Google Scholar 

  • Ahmed M, Prasad J, Gill H, Stevenson L, Gopal P (2007) Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects. J Nutr Health Aging 11:26–31

    PubMed  CAS  Google Scholar 

  • Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J, Hacker J, Oelschlaeger TA (2004) The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 40:223–229

    Article  PubMed  CAS  Google Scholar 

  • Amaretti A, Tamburini E, Bernardi T, Pompei A, Zanoni S, Vaccari G, Matteuzzi D, Rossi M (2006) Substrate preference of Bifidobacterium adolescentis MB 239: compared growth on single and mixed carbohydrates. Appl Microbiol Biotechnol 73:654–662

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y (2004) Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 72:2240–2247

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Paul DK, Ganguly S, Chatterjee M, Chandra PK (2009) Efficacy of high-dose Lactobacillus rhamnosus GG in controlling acute watery diarrhoea in Indian children: a randomized controlled trial. J Clin Gastroenterol 43:208–213

    Article  PubMed  Google Scholar 

  • Biavati B, Mattarelli P (2006) The family Bifidobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 3, Chap. 1.1.2. Springer, Singapore, pp 322–382

    Chapter  Google Scholar 

  • Carey CM, Kostrzynska M, Ojha S, Thompson S (2008) The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Methods 73:125–132

    Article  PubMed  CAS  Google Scholar 

  • Chassard C, Scott KP, Marquet P, Martin JC, Del’homme C, Dapoigny M, Flint HJ, Bernalier-Donadille A (2008) Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol Ecol 66:496–504

    Article  PubMed  CAS  Google Scholar 

  • Chassard C, Grattepanche F, Lacroix C (2011) Probiotics and health claims-challenges for tailoring their efficacy. In: Salminen S, Kneifel W (eds) Probiotics and health claims. Wiley Blackwell, UK

    Google Scholar 

  • Cinquin C, Le Blay G, Fliss I, Lacroix C (2004) Immobilization of infant faecal microbiota and utilization in an in vitro colonic fermentation model. Microb Ecol 48:128–138

    Article  PubMed  CAS  Google Scholar 

  • Cinquin C, Le Blay G, Fliss I, Lacroix C (2006) New three-stage in vitro model for infant colonic fermentation with immobilized faecal microbiota. FEMS Microbiol Ecol 57:324–336

    Article  PubMed  CAS  Google Scholar 

  • Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G (2007) Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol 7:101 (Nov 12)

    Article  PubMed  Google Scholar 

  • Cleusix V, Lacroix C, Vollenweider S, Le Blay G (2008) Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human faeces. FEMS Microbiol Ecol 63:56–64

    Article  PubMed  CAS  Google Scholar 

  • Corr SC, Gahan CG, Hill C (2007a) Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol Med Microbiol 50:380–388

    Article  CAS  Google Scholar 

  • Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007b) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104:7617–7621

    Article  CAS  Google Scholar 

  • Corr SC, Hill C, Gahan CG (2009) Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens, Chap. 1. Adv Food Nutr Res 56:1–15

    Article  PubMed  CAS  Google Scholar 

  • Dabard J, Bridonneau C, Phillipe C, Anglade P, Molle D, Nardi M et al. (2001) Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human faeces. Appl Environ Microbiol 67:4111–4118

    Article  PubMed  CAS  Google Scholar 

  • Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I (2009) In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int J Food Microbiol 133:225–233

    Article  PubMed  CAS  Google Scholar 

  • De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng/Biotechnol 111:1–66

    Article  Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988

    Article  CAS  Google Scholar 

  • Donohue DC, Salminen S (1996) Safety of probiotic bacteria. Asia Pac J Clin Nutr 5:25–28

    Google Scholar 

  • Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73:386S–392S

    PubMed  CAS  Google Scholar 

  • FAO/WHO (2002) Joint working group report on guidelines for the evaluation of probiotics in food. London, Ontario, Canada, 30 April and 1 May. Available at: http:www.who.int/foodsafety/publications/fs_management/probiotics2/en/index.html

    Google Scholar 

  • Felis GE, Dellaglio F (2007) Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 8:44–61

    PubMed  CAS  Google Scholar 

  • Finegold SM, Attebery HR, Sutter VL (1974) Effect of diet on human faecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469

    PubMed  CAS  Google Scholar 

  • Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human faeces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    PubMed  CAS  Google Scholar 

  • Frece J, Kos B, Svetec IK, Zgaga Z, Beganović J, Lebos A, Susković J (2009) Synbiotic effect of Lactobacillus helveticus M92 and prebiotics on the intestinal microflora and immune system of mice. J Dairy Res 76:98–104

    Article  PubMed  CAS  Google Scholar 

  • Fukushima Y, Kawata Y, Hara H, Terada A, Mitsuoka T (1998) Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 42:39–44

    Article  PubMed  CAS  Google Scholar 

  • Furet JP, Firmesse O, Gourmelon M, Bridonneau C, Tap J, Mondot S, Doré J, Corthier G (2009) Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol Ecol 68:351–362

    Article  PubMed  CAS  Google Scholar 

  • Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Hautefort I, Thompson A, Hinton JC, Van Immerseel F (2006) Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol 72:946–949

    Article  PubMed  CAS  Google Scholar 

  • Gill H, Prasad J (2008) Probiotics, immunomodulation, and health benefits. Adv Exp Med Biol 606:423–454

    Article  PubMed  CAS  Google Scholar 

  • Gmeiner M, Kneifel W, Kulbe KD, Wouters R, De Boever P, Nollet L, Verstraete W (2000) Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor). Appl Microbiol Biotechnol 53:219–223

    Article  PubMed  CAS  Google Scholar 

  • Gopal PK, Prasad J, Smart J, Gill HS (2001) In vitro properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67:207–216

    Article  PubMed  CAS  Google Scholar 

  • Gueimonde M, Garrigues C, van Sinderen D, de los Reyes-Gavilan, CG, Margolles A (2009) Bile-inducible efflux transporter from Bifidobacterium longum NCC2705, conferring bile resistance. Appl Environ Microbiol 75:3153–3160

    Article  PubMed  CAS  Google Scholar 

  • Harmsen HJ, Raangs GC, He T, Degener JE, Welling GW (2002) Extensive set of 16S rRNA-based probes for detection of bacteria in human faeces. Appl Environ Microbiol 68:2982–2990

    Article  PubMed  CAS  Google Scholar 

  • Hartemink R, Van Laere KM, Rombouts FM (1997) Growth of enterobacteria on fructo-oligosaccharides. J Appl Microbiol 83:367–374

    Article  PubMed  CAS  Google Scholar 

  • Hebuterne X (2003) Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Nutr Metab Care 6:49–54

    Article  Google Scholar 

  • Hickson M, D’Souza AL, Muthu N, Rogers TR, Want S, Rajkumar C, Bulpitt CJ (2007) Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ 335:80

    Article  PubMed  Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365S–373S

    PubMed  CAS  Google Scholar 

  • Ishibashi N, Yamazaki S (2001) Probiotics and safety. Am J Clin Nutr 73:465S–470S

    PubMed  CAS  Google Scholar 

  • Janer C, Rohr LM, Pelaez C, Laloi M, Cleusix V, Requena T, Meile L (2004) Hydrolysis of oligofructoses by the recombinant β-fructofuranosidase from Bifidobacterium lactis. Sys Appl Microbiol 27:279–285

    Article  CAS  Google Scholar 

  • Johnson-Henry KC, Donato KA, Shen-Tu G, Gordanpour A, Sherman PM (2008) Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect Immun 76:1340–1348

    Article  PubMed  CAS  Google Scholar 

  • Johnston BC, Supina AL, Ospina M, Vohra S (2007) Probiotics for the prevention of pediatric antibiotic-associated diarrhoea. Cochrane Database Syst Rev (2). doi:10.1002/14651858.CD004827.pub2 (CD004827)

    Google Scholar 

  • Kajander K, Krogius-Kurikka L, Rinttila T, Karjalainen H, Palva A, Korpela R (2007) Effects of multispecies probiotic supplementation on intestinal microbiota in irritable bowel syndrome. Aliment Pharmacol Ther 26:463–473

    Article  PubMed  CAS  Google Scholar 

  • Kajander K, Myllyluoma E, Rajilic-Stojanovic M, Kyronpalo S, Rasmussen M, Jarvenpaa S et al. (2008) Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther 27:48–57

    Article  PubMed  CAS  Google Scholar 

  • Koninkx JFJG, Malago JJ (2008) The protective potency of probiotic bacteria and their microbial products against enteric infections. Folia Microbiol 53:189–194

    Article  CAS  Google Scholar 

  • Lacroix C, Yildirim S (2007) Fermentation technologies for the production of probiotics with high viability and functionality. Curr Opin Biotechnol 18:176–183

    Article  PubMed  CAS  Google Scholar 

  • Laparra JM, Sanz Y (2009) Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 49(6):695–701

    Article  PubMed  CAS  Google Scholar 

  • Larsen CN, Nielsen S, Kaestel P, Brockmann E, Bennedsen M, Christensen HR et al. (2006) Dose-response study of probiotic bacteria Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus paracasei subsp. paracasei CRL-341 in healthy young adults. Eur J Clin Nutr 60:1284–1293

    Article  PubMed  CAS  Google Scholar 

  • Lavermicocca P, Valerio F, Lonigro SL, Di Leo A, Visconti A (2008) Antagonistic activity of potential probiotic Lactobacilli against the ureolytic pathogen Yersinia enterocolitica. Curr Microbiol 56:175–181

    Article  PubMed  CAS  Google Scholar 

  • Le Blay G, Lacroix C, Zihler A, Fliss I (2007) In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett Appl Microbiol 45:252–257

    Article  PubMed  CAS  Google Scholar 

  • Le Blay G, Rytka J, Zihler A, Lacroix C (2009) New in vitro colonic fermentation model for Salmonella infection in the child gut. FEMS Microbiol Ecol 67:198–207

    Article  PubMed  CAS  Google Scholar 

  • Le Blay G, Chassard C, Baltzer S, Lacroix C (2010) Set up of a new in vitro model to study dietary fructans fermentation in formula-fed babies. Br J Nutr 103(3):403–411

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Kim YB, Ji GE (1997) Note: purification of amylase secreted from Bifidobacterium adolescentis. J Appl Microbiol 83:267–272

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane GT, Macfarlane S (2007) Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr Opin Biotechnol 18:156–162

    Article  PubMed  CAS  Google Scholar 

  • Mack DR, Michail S, Wel S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276:G941–G950

    PubMed  CAS  Google Scholar 

  • Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827–833

    Article  PubMed  CAS  Google Scholar 

  • Marteau P, Shanahan F (2003) Basic aspects and pharmacology of probiotics: an overview of pharmacokinetics, mechanisms of action and side-effects. Best Pract Res Clin Gastroenterol 17:725–740

    Article  PubMed  CAS  Google Scholar 

  • Martín-Peláez S, Gibson GR, Martín-Orúe SM, Klinder A, Rastall RA, La Ragione RM, Woodward MJ, Costabile A (2008) In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella typhimurium growth in batch culture systems. FEMS Microbiol Ecol 66:608–619

    Article  PubMed  Google Scholar 

  • McFarland LV (2007) Meta-analysis of probiotics for the prevention of traveler’s diarrhoea. Travel Med Infect Dis 5:97–105

    Article  PubMed  Google Scholar 

  • Mennigen R, Bruewer M (2009) Effect of probiotics on intestinal barrier function. Ann N Y Acad Sci 1165:183–189

    Article  PubMed  Google Scholar 

  • Miettinen M, Lehtonen A, Julkunen I, Matikainen S (2000) Lactobacilli and Streptococci activate NF-kappa B and STAT signaling pathways in human macrophages. J Immunol 164:3733–3740

    PubMed  CAS  Google Scholar 

  • Moller PL, Jorgensen F, Hansen OC, Madsen SM, Stougaard P (2001) Intra- and extracellular beta-galactosidases from Bifidobacterium bifidum and B. infantis: molecular cloning, heterologous expression, and comparative characterization. Appl Environ Microbiol 67:2276–2283

    Article  PubMed  CAS  Google Scholar 

  • O’Toole PW, Cooney JC (2008) Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008:175285

    PubMed  Google Scholar 

  • Paton AW, Morona R, Paton JC (2006) Designer probiotics for prevention of enteric infections. Nat Rev Microbiol 4:193–200

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Li Z R, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Penna FJ, Péret LA, Vieira LQ, Nicoli JR (2008) Probiotics and mucosal barrier in children. Curr Opin Clin Nutr Metab Care 11:640–644

    Article  PubMed  Google Scholar 

  • Pineiro M, Stanton C (2007) Probiotic bacteria: legislative framework-requirements to evidence basis. J Nutr 137:850S–853S

    PubMed  CAS  Google Scholar 

  • Pridmore RD, Pittet AC, Praplan F, Cavadini C (2008) Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett 283:210–215

    Article  PubMed  CAS  Google Scholar 

  • Rastall RA, Gibson GR, Gill HS, Guarner F, Klaenhammer TR, Pot B, Reid G, Rowland IR, Sanders ME (2005) Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol 52:145–152

    Article  PubMed  CAS  Google Scholar 

  • Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997

    Article  PubMed  CAS  Google Scholar 

  • Rigottier-Gois L, Bourhis AG, Gramet G, Rochet V, Doré J (2003) Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol Ecol 43:237–245

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study in pure and faecal cultures. Appl Environ Microbiol 71:6150–6158

    Article  PubMed  CAS  Google Scholar 

  • Salminen S, Ouwehand A, Benno Y, Lee YK (1999) Probiotics: how should they be defined? Trends Food Sci Technol 10:107–110

    Article  CAS  Google Scholar 

  • Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S (2007) Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol 73:1753–1765

    Article  PubMed  CAS  Google Scholar 

  • Saulnier DM, Gibson GR, Kolida S (2008) In vitro effects of selected synbiotics on the human faecal microbiota composition. FEMS Microbiol Ecol 66:516–527

    Article  PubMed  CAS  Google Scholar 

  • Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151:528–535

    Article  PubMed  CAS  Google Scholar 

  • Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J (2000) Quantification of bacterial groups within human faecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266

    Article  PubMed  CAS  Google Scholar 

  • Sherman PM, Johnson-Henry KC, Yeung HP, Ngo PS, Goulet J, Tompkins TA (2005) Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 73:5183–5188

    Article  PubMed  CAS  Google Scholar 

  • Sherman PM, Ossa JC, Johnson-Henry KC (2009) Unraveling mechanisms of action of probiotics. Nutr Clin Pract 24:10–14

    Article  PubMed  Google Scholar 

  • Silva AM, Barbosa FH, Duarte R, Vieira LQ, Arantes RM, Nicoli JR (2004) Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J Appl Microbiol 97:29–37

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK (2000) Analysis of the faecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588

    Article  PubMed  CAS  Google Scholar 

  • Turcotte C, Lacroix C, Kheadr E, Grignon L, Fliss I (2004) A rapid turbidometric microplate bioassay for accurate quantification of lactic acid bacteria bacteriocins. Int J Food Microbiol 90:283–293

    Article  PubMed  CAS  Google Scholar 

  • Turroni F, Marchesi JR, Foroni E, Gueimonde M, Shanahan F, Margolles A, van Sinderen D, Ventura M (2009) Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME J 3:745–751

    Article  PubMed  CAS  Google Scholar 

  • von Ah U, Mozzetti V, Lacroix C, Kheadr EE, Fliss I, Meile L (2007) Classification of a moderately oxygen-tolerant isolate from baby faeces as Bifidobacterium thermophilum. BMC Microbiol 7:79

    Article  PubMed  Google Scholar 

  • Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Conway PL, Brown IL, Evans AJ (1999) In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria. Appl Environ Microbiol 65:4848–4854

    PubMed  CAS  Google Scholar 

  • Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Wold AE (2001) Immune effects of probiotics. Scand J Nutr 45:76–85

    Google Scholar 

  • Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9:804–816

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Lacroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gagnon, M., Zihler, A., Chassard, C., Lacroix, C. (2011). Ecology of Probiotics and Enteric Protection. In: Malago, J., Koninkx, J., Marinsek-Logar, R. (eds) Probiotic Bacteria and Enteric Infections. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0386-5_3

Download citation

Publish with us

Policies and ethics