Skip to main content

Advertisement

Log in

Effect-directed analysis: Current status and future challenges

  • Review
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Effect-directed analysis (EDA) has become useful for identification of toxicant(s) that occur in mixtures in the environment, especially those that are causative agents of specific adverse effects. Here, we summarize and review EDA methodology including preparation of samples, biological analyses, fractionations, and instrumental analyses, highlighting key scientific advancements. A total of 63 documents since 1999 (Scopus search) including 46 research articles, 13 review papers, and 4 project descriptions, have been collected and reviewed in this study. At the early stage (1999–2010), most studies that applied EDA focused on organic extracts of freshwater and coastal contaminated sediments and wastewater. Toxic effects were often measured using cell-based bioassays (in vitro) and the causative chemicals were identified by use of low resolution gas chromatography with mass selective detector (GCMSD). More recently (2010-present), EDA has been extended to various matrices such as biota, soil, crude oil, and suspended solids and techniques have been improved to include determination of bioavailability in vivo. In particular, methods for non-target screenings of organic chemicals in environmental samples using cutting-edge instrumentation such as time of flight-mass spectrometry (ToF-MS), Fourier transform-ion cyclotron resonance (FT-ICR), and Orbitrap mass spectrometer have been developed. This overview provides descriptions of recent improvements of EDA and suggests future research directions based on current understandings and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandow N, Altenburger R, Lübcke-von Varel U, Paschke A, Streck G, Brack W (2009a) Partitioning-based dosing: an approach to include bioavailability in the effect-directed analysis of contaminated sediment samples. Environ Sci Technol 43:3891–3896

    Article  Google Scholar 

  • Bandow N, Altenburger R, Streck G, Brack W (2009b) Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. Environ Sci Technol 43:7343–7349

    Article  Google Scholar 

  • Behnisch PA, Hosoe K, Sakai SI (2003) Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. Environ Int 29:861–877

    Article  Google Scholar 

  • Booij P, Vethaak AD, Leonards PEG, Sjollema SB, Kool J, De Voogt P, Lamoree MH (2014) Identification of photosynthesis inhibitors of pelagic marine algae using 96-well plate microfractionation for enhanced throughput in effect-directed analysis. Environ Sci Technol 48:8003–8011

    Article  Google Scholar 

  • Brack W, Altenburger R, Ensenbach U, Möder M, Segner H, Schüürmann G (1999) Bioassay-directed identification of organic toxicants in river sediment in the industrial region of Bitterfeld (Germany) - a contribution to hazard assessment. Arch Environ Con Tox 37:164–174

    Article  Google Scholar 

  • Brack W, Schirmer K, Kind T, Schrader S, Schüürmann G (2002) Effect-directed fractionation and identification of cytochrome P4501A-inducing halogenated aromatic hydrocarbons in a contaminated sediment. Environ Toxicol Chem 21:2654–2662

    Article  Google Scholar 

  • Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407

    Article  Google Scholar 

  • Brack W, Kind T, Hollert H, Schrader S, Möder M (2003) Sequential fractionation procedure for the identification of potentially cytochrome P4501A-inducing compounds. J Chromatogr A 986:55–66

    Article  Google Scholar 

  • Brack W, Schirmer K (2003) Effect-directed identification of oxygen and sulfur heterocycles as major polycyclic aromatic cytochrome P4501A-inducers in a contaminated sediment. Environ Sci Technol 37:3062–3070

    Article  Google Scholar 

  • Brack W, Bakker J, De Deckere E, Deerenberg C, Van Gils J, Hein M, Jurajda P, Kooijman B, Lamoree M, Lek S, López De Alda MJ, Marcomini A, Muñoz I, Rattei S, Segner H, Thomas K, Von Der Ohe PC, Westrich B, De Zwart D, Schmitt-Jansen M (2005a) MODELKEY. Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity. Environ Sci Pollut R 12:252–256

    Article  Google Scholar 

  • Brack W, Schirmer K, Erdinger L, Hollert H (2005b) Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24:2445–2458

    Article  Google Scholar 

  • Brack W, Schmitt-Jansen M, MacHala M, Brix R, Barceló D, Schymanski E, Streck G, Schulze T (2008) How to confirm identified toxicants in effect-directed analysis. Anal Bioanal Chem 390:1959–1973

    Article  Google Scholar 

  • Burgess RM, Ho KT, Brack W, Lamoree M (2013) Effects-directed analysis (EDA) and toxicity identification evaluation (TIE): complementary but different approaches for diagnosing causes of environmental toxicity. Environ Toxicol Chem 32:1935–1945

    Article  Google Scholar 

  • Cornelissen G, Rigterink H, Ten Hulscher DEM, Vrind BA, Van Noort PCM (2001) A simple tenax® extraction method to determine the availability of sediment-sorbed organic compounds. Environ Toxicol Chem 20:706–711

    Article  Google Scholar 

  • Creusot N, Budzinski H, Balaguer P, Kinani S, Porcher JM, Aït-Aïssa S (2013) Effect-directed analysis of endocrine-disrupting compounds in multi-contaminated sediment: identification of novel ligands of estrogen and pregnane X receptors. Anal Bioanal Chem 405:2553–2566

    Article  Google Scholar 

  • Dévier MH, Mazellier P, Aït-Aïssa S, Budzinski H (2011) New challenges in environmental analytical chemistry: identification of toxic compounds in complex mixtures. CR Chim 14:766–779

    Article  Google Scholar 

  • Di Paolo C, Seiler T-B, Keiter S, Hu M, Muz M, Brack W, Hollert H (2015) The value of zebrafish as an integrative model in effect-directed analysis - a review. Environ Sci Eur 27:1–11

    Article  Google Scholar 

  • Doering JA, Farmahin R, Wiseman S, Beitel SC, Kennedy SW, Giesy JP, Hecker M (2015) Differences in activation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain. Environ Sci Technol 49:4681–4689

    Article  Google Scholar 

  • Eichbaum K, Brinkmann M, Buchinger S, Reifferscheid G, Hecker M, Giesy JP, Engwall M, van Bavel B, Hollert H (2014) In vitro bioassays for detecting dioxin-like activity - Application potentials and limits of detection, a review. Sci Total Environ 487:37–48

    Article  Google Scholar 

  • Farmahin R, Jones SP, Crump D, Hahn ME, Giesy JP, Zwiernik MJ, Bursian SJ, Kennedy SW (2014) Species-specific relative AHR1 binding affinities of 2,3,4,7,8-pentachlorodibenzofuran explain avian species differences in its relative potency. Comp Biochem Phys C 161:21–25

    Google Scholar 

  • Fetter E, Krauss M, Brion F, Kah O, Scholz S, Brack W (2014) Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos. Aquat Toxicol 154:221–229

    Article  Google Scholar 

  • Gallampois CMJ, Schymanski EL, Bataineh M, Buchinger S, Krauss M, Reifferscheid G, Brack W (2013) Integrated biologicalchemical approach for the isolation and selection of polyaromatic mutagens in surface waters. Anal Bioanal Chem 405:9101–9112

    Article  Google Scholar 

  • Giesy JP, Hilscherova K, Jones PD, Kannan K, Machala M (2002) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Mar Pollut Bull 45:3–16

    Article  Google Scholar 

  • Grote M, Brack W, Altenburger R (2005) Identification of toxicants from marine sediment using effect-directed analysis. Environ Toxicol 20:475–486

    Article  Google Scholar 

  • Grung M, Lichtenthaler R, Ahel M, Tollefsen KE, Langford K, Thomas KV (2007) Effects-directed analysis of organic toxicants in wastewater effluent from Zagreb, Croatia. Chemosphere 67:108–120

    Article  Google Scholar 

  • Grung M, Ns K, Fogelberg O, Nilsen AJ, Brack W, Lubcke-Von Varel U, Thomas KV (2011) Effects-directed analysis of sediments from polluted marine sites in Norway. J Toxicol Env Heal A 74:439–454

    Article  Google Scholar 

  • Hamers T, Leonards PEG, Legler J, Dick Vethaak A, Schipper CA (2010) Toxicity profiling: an integrated effect-based tool for site-specific sediment quality assessment. Integr Environ Assess Manag 6:761–773

    Article  Google Scholar 

  • He Y, Wiseman SB, Hecker M, Zhang X, Wang N, Perez LA, Jones PD, Gamal El-Din M, Martin JW, Giesy JP (2011) Effect of ozonation on the estrogenicity and androgenicity of oil sands process-affected water. Environ Sci Technol 45:6268–6274

    Article  Google Scholar 

  • Hecker M, Newsted JL, Murphy MB, Higley EB, Jones PD, Wu R, Giesy JP (2006) Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol Appl Pharm 217:114–124

    Article  Google Scholar 

  • Hecker M, Hollert H (2009) Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges. Environ Sci Pollut R 16:607–613

    Article  Google Scholar 

  • Hecker M, Giesy J (2011) Effect-Directed Analysis of Ah-Receptor Mediated Toxicants, Mutagens, and Endocrine Disruptors in Sediments and Biota. In: Brack W (ed) Effect-directed analysis of complex environmental contamination. The handbook of environmental chemistry. Springer Berlin Heidelberg, pp 285–313

    Chapter  Google Scholar 

  • Henneberg A, Bender K, Blaha L, Giebner S, Kuch B, Köhler HR, Maier D, Oehlmann J, Richter D, Scheurer M, Schulte-Oehlmann U, Sieratowicz A, Ziebart S, Triebskorn R (2014) Are in vitro methods for the detection of endocrine potentials in the aquatic environment predictive for in vivo effects? Outcomes of the projects SchussenAktiv and SchussenAktiv plus in the Lake Constance Area, Germany. PLoS ONE 9:e98307

    Article  Google Scholar 

  • Higley E, Grund S, Jones PD, Schulze T, Seiler TB, Varel ULV, Brack W, Wölz J, Zielke H, Giesy JP, Hollert H, Hecker M (2012) Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effect-directed analysis. Environ Toxicol Chem 31:1053–1062

    Article  Google Scholar 

  • Hilscherová K, Dušek L, Kannan K, Giesy JP, Holoubek I (2000a) Evaluation of cytotoxicity, dioxin-like activity and estrogenicity of complex environmental mixtures. Cent Eur J Public Health 8:28–29

    Google Scholar 

  • Hilscherová K, Machala M, Kannan K, Blankenship AL, Giesy JP (2000b) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Environ Sci Pollut R 7:159–171

    Article  Google Scholar 

  • Hilscherova K, Jones PD, Gracia T, Newsted JL, Zhang X, Sanderson JT, Yu RMK, Wu RSS, Giesy JP (2004) Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. Toxicol Sci 81:78–89

    Article  Google Scholar 

  • Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout. Environ Sci Pollut R 12:347–360

    Article  Google Scholar 

  • Hong S, Khim JS, Naile JE, Park J, Kwon BO, Wang T, Lu Y, Shim WJ, Jones PD, Giesy JP (2012) AhR-mediated potency of sediments and soils in estuarine and coastal areas of the Yellow Sea region: a comparison between Korea and China. Environ Pollut 171:216–225

    Article  Google Scholar 

  • Hong S, Khim JS, Park J, Kim S, Lee S, Choi K, Kim C-S, Choi SD, Park J, Ryu J, Jones PD, Giesy JP (2014) Instrumental and bioanalytical measures of dioxin-like compounds and activities in sediments of the Pohang Area, Korea. Sci Total Environ 470-471:1517–1525

    Article  Google Scholar 

  • Hong S, Lee S, Choi K, Kim GB, Ha SY, Kwon BO, Ryu J, Yim UH, Shim WJ, Jung J, Giesy JP, Khim JS (2015) Effect-directed analysis and mixture effects of AhR-active PAHs in crude oil and coastal sediments contaminated by the Hebei Spirit oil spill. Environ Pollut 199:110–118

    Article  Google Scholar 

  • Houtman CJ, Van Oostveen AM, Brouwer A, Lamoree MH, Legler J (2004) Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ Sci Technol 38:6415–6423

    Article  Google Scholar 

  • Hu X, Shi W, Yu N, Jiang X, Wang S, Giesy JP, Zhang X, Wei S, Yu H (2015) Bioassay-directed identification of organic toxicants in water and sediment of Tai Lake, China. Water Res 73:231–241

    Article  Google Scholar 

  • Kaisarevic S, Varel ULv, Orcic D, Streck G, Schulze T, Pogrmic K, Teodorovic I, Brack W, Kovacevic R (2009) Effect-directed analysis of contaminated sediment from the wastewater canal in Pancevo industrial area, Serbia. Chemosphere 77:907–913

    Article  Google Scholar 

  • Khim JS, Kannan K, Villeneuve DL, Koh CH, Giesy JP (1999a) Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 1. Instrumental analysis. Environ Sci Technol 33:4199–4205

    Article  Google Scholar 

  • Khim JS, Villeneuve DL, Kannan K, Koh CH, Giesy JP (1999b) Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 2. In vitro gene expression assays. Environ Sci Technol 33:4206–4211

    Article  Google Scholar 

  • Khim JS, Villeneuve DL, Kannan K, Lee KT, Snyder SA, Koh CH, Giesy JP (1999c) Alkylphenols, polycyclic aromatic hydrocarbons, and organochlorines in sediment from Lake Shihwa, Korea: instrumental and bioanalytical characterization. Environ Toxicol Chem 18:2424–2432

    Google Scholar 

  • Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105

    Article  Google Scholar 

  • Koh CH, Khim JS, Kannan K, Villeneuve DL, Senthilkumar K, Giesy JP (2004) Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-TCDD equivalents (TEQs) in sediment from the Hyeongsan River, Korea. Environ Pollut 132:489–501

    Article  Google Scholar 

  • Krauss M, Singer H, Hollender J (2010) LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns. Anal Bioanal Chem 397:943–951

    Article  Google Scholar 

  • Krewski D, Acosta D, Andersen M, Anderson H, Bailar JC, Boekelheide K, Brent R, Charnley G, Cheung VG, Green S, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O, Patterson RD, Pennie W, Scala RA, Solomon GM, Stephens M, Yager J, Zeise L (2010) Toxicity testing in the 21st Century: a vision and a strategy. J Toxicol Env Heal B 13:51–138

    Article  Google Scholar 

  • Kwon J-H, Wuethrich T, Mayer P, Escher BI (2009) Development of a dynamic delivery method for in vitro bioassays. Chemosphere 76:83–90

    Article  Google Scholar 

  • Lübcke-von Varel U, Streck G, Brack W (2008) Automated fractionation procedure for polycyclic aromatic compounds in sediment extracts on three coupled normal-phase high-performance liquid chromatography columns. J Chromatogr A 1185:31–42

    Article  Google Scholar 

  • Larsson M, Orbe D, Engwall M (2012) Exposure time-dependent effects on the relative potencies and additivity of PAHs in the Ah receptor-based H4IIE-luc bioassay. Environ Toxicol Chem 31:1149–1157

    Article  Google Scholar 

  • Larsson M, Giesy JP, Engwall M (2014a) AhR-mediated activities of polycyclic aromatic compound (PAC) mixtures are predictable by the concept of concentration addition. Environ Int 73:94–103

    Article  Google Scholar 

  • Larsson M, Hagberg J, Giesy JP, Engwall M (2014b) Time-dependent relative potency factors for polycyclic aromatic hydrocarbons and their derivatives in the H4IIE-luc bioassay. Environ Toxicol Chem 33:943–953

    Article  Google Scholar 

  • Lee KT, Hong S, Lee JS, Chung KH, Hilscherová K, Giesy JP, Khim JS (2013a) Revised relative potency values for PCDDs, PCDFs, and non-ortho-substituted PCBs for the optimized H4IIE-luc in vitro bioassay. Environ Sci Pollut R 20:8590–8599

    Article  Google Scholar 

  • Lee S, Shin W-H, Hong S, Kang H, Jung D, Yim UH, Shim WJ, Khim JS, Seok C, Giesy JP, Choi K (2015) Measured and predicted affinities of binding and relative potencies to activate the AhR of PAHs and their alkylated analogues. Chemosphere 139:23–29

    Article  Google Scholar 

  • Lee SY, Kang HJ, Kwon JH (2013b) Toxicity cutoff of aromatic hydrocarbons for luminescence inhibition of Vibrio fischeri. Ecotox Environ Safe 94:116–122

    Article  Google Scholar 

  • Legler J, Van Velzen M, Cenijn PH, Houtman CJ, Lamoree MH, Wegener JW (2011) Effect-directed analysis of municipal landfill soil reveals novel developmental toxicants in the zebrafish Danio rerio. Environ Sci Technol 45:8552–8558

    Article  Google Scholar 

  • Lei L, Aoyama I (2010) Effect-directed investigation and interactive effect of organic toxicants in landfill leachates combining Microtox test with RP-HPLC fractionation and GC/MS analysis. Ecotoxicology 19:1268–1276

    Article  Google Scholar 

  • Li J, Li M, Ren S, Feng C, Li N (2014) Thyroid hormone disrupting activities of sediment from the Guanting Reservoir, Beijing, China. J Hazard Mater 274:191–197

    Article  Google Scholar 

  • Pieterse B, Felzel E, Winter R, van der Burg B, Brouwer A (2013) PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures. Environ Sci Technol 47:11651–11659

    Article  Google Scholar 

  • Qu G, Shi J, Wang T, Fu J, Li Z, Wang P, Ruan T, Jiang G (2011) Identification of tetrabromobisphenol a diallyl ether as an emerging neurotoxicant in environmental samples by bioassaydirected fractionation and HPLC-APCI-MS/MS. Environ Sci Technol 45:5009–5016

    Article  Google Scholar 

  • Radović JR, Thomas KV, Parastar H, Díez S, Tauler R, Bayona JM (2014) Chemometrics-assisted effect-directed analysis of crude and refined oil using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Environ Sci Technol 48:3074–3083

    Article  Google Scholar 

  • Regueiro J, Matamoros V, Thibaut R, Porte C, Bayona JM (2013) Use of effect-directed analysis for the identification of organic toxicants in surface flow constructed wetland sediments. Chemosphere 91:1165–1175

    Article  Google Scholar 

  • Samoiloff MR, Bell J, Birkholz DA, Webster GRB, Arnott EG, Pulak R, Madrid A (1983) Combined bioassay-chemical fractionation scheme for the determination and ranking of toxic chemicals in sediments. Environ Sci Technol 17:329–334

    Article  Google Scholar 

  • Scheurell M, Franke S, Hühnerfuss H (2007) Effect-directed analysis: a powerful tool for the surveillance of aquatic systems. Int J Environ An Ch 87:401–413

    Article  Google Scholar 

  • Schmitt C, Balaam J, Leonards P, Brix R, Streck G, Tuikka A, Bervoets L, Brack W, van Hattum B, Meire P, de Deckere E (2010) Characterizing field sediments from three European river basins with special emphasis on endocrine effects - a recommendation for Potamopyrgus antipodarum as test organism. Chemosphere 80:13–19

    Article  Google Scholar 

  • Schmitt C, Vogt C, Machala M, de Deckere E (2011) Sediment contact test with Potamopyrgus antipodarum in effect-directed analyses-challenges and opportunities. Environ Sci Pollut R 18:1398–1404

    Article  Google Scholar 

  • Schmitt S, Reifferscheid G, Claus E, Schlusener M, Buchinger S (2012) Effect directed analysis and mixture effects of estrogenic compounds in a sediment of the river Elbe. Environ Sci Pollut R 19:3350–3361

    Article  Google Scholar 

  • Schuetzle D, Lewtas J (1986) Bioassay-directed chemical analysis in environmental research. Anal Chem 58:1060A–1075A

    Google Scholar 

  • Schwab K, Brack W (2007) Large volume TENAX® extraction of the bioaccessible fraction of sediment-associated organic compounds for a subsequent effect-directed analysis. J Soil Sediment 7:178–186

    Article  Google Scholar 

  • Schwab K, Altenburger R, Lübcke-Von Varel U, Streck G, Brack W (2009) Effect-directed analysis of sediment-associated algal toxicants at selected hot spots in the River Elbe basin with a special focus on bioaccessibility. Environ Toxicol Chem 28:1506–1517

    Article  Google Scholar 

  • Shi W, Wei S, Hu XX, Hu GJ, Chen CL, Wang XR, Giesy JP, Yu HX (2013) Identification of thyroid receptor ant/agonists in water sources using mass balance analysis and Monte Carlo simulation. PLoS ONE 8:e73883

    Article  Google Scholar 

  • Simon E, Bytingsvik J, Jonker W, Leonards PEG, De Boer J, Jenssen BM, Lie E, Aars J, Hamers T, Lamoree MH (2011) Blood plasma sample preparation method for the assessment of thyroid hormone-disrupting potency in effect-directed analysis. Environ Sci Technol 45:7936–7944

    Article  Google Scholar 

  • Simon E, Van Velzen M, Brandsma SH, Lie E, Loken K, De Boer J, Bytingsvik J, Jenssen BM, Aars J, Hamers T, Lamoree MH (2013) Effect-directed analysis to explore the polar bear exposome: identification of thyroid hormone disrupting compounds in plasma. Environ Sci Technol 47:8902–8912

    Article  Google Scholar 

  • Simon E, Lamoree MH, Hamers T, de Boer J (2015) Challenges in effect-directed analysis with a focus on biological samples. TrAc-Trend Anal Chem 67:179–191

    Article  Google Scholar 

  • Snyder SA, Villeneuve DL, Snyder EM, Giesy JP (2001) Identification and quantification of estrogen receptor agonists in wastewater effluents. Environ Sci Technol 35:3620–3625

    Article  Google Scholar 

  • Thomas KV, Langford K, Petersen K, Smith AJ, Tollefsen KE (2009) Effect-directed identification of naphthenic acids as important in vitro xeno-estrogens and anti-androgens in North Sea offshore produced water discharges. Environ Sci Technol 43:8066–8071

    Article  Google Scholar 

  • USEPA (2007) Sediment Toxicity Identification Evaluation (TIE) Phases I, II, and III Guidance Document. EPA/600/R-07/080, US Environmental Protection Agency, Washington DC

  • Van Wouwe N, Windal I, Vanderperren H, Eppe G, Xhrouet C, Massart AC, Debacker N, Sasse A, Baeyens W, De Pauw E, Sartor F, Van Oyen H, Goeyens L (2004) Validation of the CALUX bioassay for PCDD/F analyses in human blood plasma and comparison with GC-HRMS. Talanta 63:1157–1167

    Article  Google Scholar 

  • Villeneuve DL, Richter CA, Blankenship AL, Giesy JP (1999) Rainbow trout cell bioassay-derived relative potencies for halogenated aromatic hydrocarbons: comparison and sensitivity analysis. Environ Toxicol Chem 18:879–888

    Article  Google Scholar 

  • Villeneuve DL, Blankenship AL, Giesy JP (2000) Derivation and application of relative potency estimates based on in vitro bioassay results. Environ Toxicol Chem 19:2835–2843

    Article  Google Scholar 

  • Villeneuve DL, Khim JS, Kannan K, Giesy JP (2001) In vitro response of fish and mammalian cells to complex mixtures of polychlorinated naphthalenes, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Aquat Toxicol 54:125–141

    Article  Google Scholar 

  • Villeneuve DL, Khim JS, Kannan K, Giesy JP (2002) Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxinlike and estrogenic responses in three cell lines. Environ Toxicol 17:128–137

    Article  Google Scholar 

  • Vrabie CM, Sinnige TL, Murk AJ, Jonker MTO (2012) Effect-directed assessment of the bioaccumulation potential and chemical nature of A h receptor agonists in crude and refined oils. Environ Sci Technol 46:1572–1580

    Article  Google Scholar 

  • Wölz J, Brack W, Moehlenkamp C, Claus E, Braunbeck T, Hollert H (2010) Effect-directed analysis of Ah receptor-mediated activities caused by PAHs in suspended particulate matter sampled in flood events. Sci Total Environ 408:3327–3333

    Article  Google Scholar 

  • Weiss JM, Hamers T, Thomas KV, Van Der Linden S, Leonards PEG, Lamoree MH (2009) Masking effect of anti-androgens on androgenic activity in European river sediment unveiled by effect-directed analysis. Anal Bioanal Chem 394:1385–1397

    Article  Google Scholar 

  • Weiss JM, Simon E, Stroomberg GJ, De Boer R, De Boer J, Van Der Linden SC, Leonards PEG, Lamoree MH (2011) Identification strategy for unknown pollutants using high-resolution mass spectrometry: androgen-disrupting compounds identified through effect-directed analysis. Anal Bioanal Chem 400:3141–3149

    Article  Google Scholar 

  • Windal I, Denison MS, Birnbaum LS, Van Wouwe N, Baeyens W, Goeyens L (2005) Chemically activated luciferase gene expression (CALUX) cell bioassay analysis for the estimation of dioxinlike activity: critical parameters of the CALUX procedure that impact assay results. Environ Sci Technol 39:7357–7364

    Article  Google Scholar 

  • Yue S, Ramsay BA, Brown RS, Wang J, Ramsay JA (2015) Identification of estrogenic compounds in oil sands process waters by effect directed analysis. Environ Sci Technol 49:570–577

    Article  Google Scholar 

  • Zhang X, Yu RMK, Jones PD, Lam GKW, Newsted JL, Gracia T, Hecker M, Hilscherova K, Sanderson JT, Wu RSS, Giesy JP (2005) Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line. Environ Sci Technol 39:2777–2785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Seong Khim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Giesy, J.P., Lee, JS. et al. Effect-directed analysis: Current status and future challenges. Ocean Sci. J. 51, 413–433 (2016). https://doi.org/10.1007/s12601-016-0038-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-016-0038-4

Key words

Navigation