Skip to main content

Advertisement

Log in

Mechanically flexible V3S4@carbon composite fiber as a high-capacity and fast-charging anode for sodium-ion capacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hybrid Na-ion capacitors (NICs) have received considerable interests owing to their low-cost, high-safety, and rapidly charging energy-storage characteristics. The NICs are composed of a capacitor-type cathode and a battery-type anode. The major challenge for NICs is to search for suitable electrode materials to overcome the sluggish diffusion of Na+ in the anode. Herein, ultrafine vanadium sulfide is encapsulated in carbon fiber (V3S4@CNF) as a self-supported electrode by electrospinning and in situ sulfurization. The carbon cladding and one-dimensional (1D) nanofiber network-like structure could alleviate the volume expansion of V3S4 during Na+ de-/intercalation process. Consequently, the V3S4@CNF anode exhibited a pseudocapacitive sodium storage in terms of large Na+-storage capacity (476 mAh·g−1 at 0.1 A·g−1), high-rate capability (290 mAh·g−1 at 20.0 A·g−1) and excellent cycling stability (95% capacity retention for 1500 cycles at 2.0 A·g−1) in Na half-cells. By employing V3S4@CNF as the anode and the activated carbon (AC) cathode, the as-assembled NICs could deliver a high energy density of 110 Wh·kg−1 at a power density of 200 W·kg−1. Even at a high power of 10,000 W·kg−1, the specific energy is still up to 42 Wh·kg−1.

Graphical abstract

摘要

混合钠离子电容器因其具有成本低、高安全性和快速充放电等特点而, 备受研究者关注。混合钠离子电容器一般由电容型正极和电池型负极组成,其发展最大的难点在于要克服负极侧缓慢的钠离子扩散动力学。在此,我们通过静电纺丝以及后续的碳化、原位硫化,将超细硫化钒颗粒封装在碳纤维的碳基质中,形成一种柔性自支撑电极材料V3S4@CNF。这种独特的碳纤维包覆作用能够很好的缓解电极循环中V3S4的体积膨胀,使得V3S4@CNF电极具有提升的电化学性能。在钠离子半电池的测试中,V3S4@CNF负极展示出高的储Na+容量(在0.1 A·g−1电流密度下容量476 mAh·g−1)、高的倍率性能(在20 A·g−1电流密度下容量为290 mAh·g−1)和长的循环稳定性(在2 A·g−1电流密度下稳定循环1500圈)。最后,用V3S4@CNF负极和活性炭正极组装的混合钠离子电容器,在200 W·kg−1的功率密度下输出了110 Wh·kg−1的高能量密度,即使功率增加到10000 W·kg−1,也能提供42 Wh·kg−1的能量密度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An YB, Liu TY, Li C, Zhang X, Hu T, Sun XZ, Wang K, Wang CD, Ma YW. A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors. J Mater Chem A. 2021;9(28):15654. https://doi.org/10.1039/D1TA03933D.

    Article  CAS  Google Scholar 

  2. Wang L, Zhang X, Xu YN, Li C, Liu WJ, Yi S, Wang K, Sun XZ, Wu ZS, Ma YW. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv Funct Mater. 2021;31(36):2104286. https://doi.org/10.1002/adfm.202104286.

    Article  CAS  Google Scholar 

  3. Kang R, Zhu WQ, Li S, Zou BB, Wang LL, Li GC, Liu XH, Ng DHL, Qiu JX, Zhao Y, Qiao F, Lian JB. Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor. Rare Met. 2021;40(9):2424. https://doi.org/10.1007/s12598-020-01638-4.

    Article  CAS  Google Scholar 

  4. Zhu XQ, Wang K, Xu YN, Zhang GF, Li SQ, Li C, Zhang X, Sun XZ, Ge XB, Ma YW. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes. Energy Storage Mater. 2021;36:291. https://doi.org/10.1016/j.ensm.2021.01.002.

    Article  Google Scholar 

  5. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018;8(17):1703137. https://doi.org/10.1002/aenm.201703137.

    Article  CAS  Google Scholar 

  6. Fang Y, Xiao LF, Chen ZX, Ai XP, Cao YL, Yang HX. Recent advances in sodium-ion battery materials. Electrochem Energy R. 2018;1(3):294. https://doi.org/10.1007/s41918-018-0008-x.

    Article  CAS  Google Scholar 

  7. Yin XP, Sarkar S, Shi SS, Huang QA, Zhao HB, Yan LM, Zhao YF, Zhang JJ. Recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives. Adv Funct Mater. 2020;30(11):1908445. https://doi.org/10.1002/adfm.201908445.

    Article  CAS  Google Scholar 

  8. Tian YS, Zeng GB, Rutt A, Shi T, Kim H, Wang JY, Koettgen J, Sun YZ, Ouyang B, Chen TN, Lun ZY, Rong ZQ, Persson K, Ceder G. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev. 2021;121(3):1623. https://doi.org/10.1021/acs.chemrev.0c00767.

    Article  CAS  Google Scholar 

  9. Zhao B, Liu QQ, Wei GJ, Wang JH, Yu XY, Li X, Wu HB. Synthesis of CoSe2 nanoparticles embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries. Chem. Eng. J. 2019;378:122206. https://doi.org/10.1016/j.cej.2019.122206.

  10. Zhao B, Liu QQ, Chen YJ, Liu Q, Yu Q, Wu HB. Interface-induced pseudocapacitance in nonporous heterogeneous particles for high volumetric sodium storage. Adv Funct Mater. 2020;30(42):2002019. https://doi.org/10.1002/adfm.202002019.

    Article  CAS  Google Scholar 

  11. Liu SL, Mao JF, Zhang L, Pang WK, Du AJ, Guo ZP. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv Mater. 2021;33(1):2006313. https://doi.org/10.1002/adma.202006313.

    Article  CAS  Google Scholar 

  12. Zhang TQ, Mao ZF, Shi XJ, Jin J, He BB, Wang R, Gong YS, Wang HW. Tissue-derived carbon microbelt paper: a high-initial-Coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors. Energy Environ. Sci. 2022;15(1):158. https://doi.org/10.1039/D1EE03214C.

  13. Zhang Q, Luan JY, Tang YG, Ji XB, Wang HY. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew Chem Int Ed Engl. 2020;59(32):13180. https://doi.org/10.1002/anie.202000162.

    Article  CAS  Google Scholar 

  14. Zhang TS, Tang Y, Guo S, Cao XX, Pan AQ, Fang GZ, Zhou J, Liang SQ. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ Sci. 2020;13(12):4625. https://doi.org/10.1039/D0EE02620D.

    Article  CAS  Google Scholar 

  15. Cai P, Zou KY, Deng XL, Wang BW, Zheng M, Li LH, Hou HS, Zou GQ, Ji XB. Comprehensive understanding of sodium-ion capacitors: definition, mechanisms, configurations, materials, key technologies, and future developments. Adv Energy Mater. 2021;11(16):2003804. https://doi.org/10.1002/aenm.202003804.

    Article  CAS  Google Scholar 

  16. Wang HH, Zhu CR, Chao DL, Yan QY, Fan HJ. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater. 2017;29(46):1702093. https://doi.org/10.1002/adma.201702093.

    Article  CAS  Google Scholar 

  17. Ramachandran K, Subburam G, Liu XH, Huang MG, Xu C, Ng DHL, Cui YX, Li GC, Qiu JX, Wang C, Lian JB. Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor. Rare Met. 2022;41(7):2481. https://doi.org/10.1007/s12598-022-01992-5.

    Article  CAS  Google Scholar 

  18. Huang LC, Zeng LC, Zhu JH, Sun LN, Yao L, Deng LB, Zhang PX. Oxygen-vacancy-rich TiO2-coated carbon nanofibers for fast sodium storage in high-performance sodium-ion hybrid capacitors. J. Power Sources. 2021;493:229678. https://doi.org/10.1016/j.jpowsour.2021.229678.

  19. Feng LX, Wang K, Zhang X, Sun XZ, Li C, Ge XB, Ma YW. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater. 2018;28(4):1704463. https://doi.org/10.1002/adfm.201704463.

    Article  CAS  Google Scholar 

  20. Yi S, Wang L, Zhang X, Li C, Liu WJ, Wang K, Sun XZ, Xu YN, Yang ZX, Cao Y, Sun J, Ma YW. Cationic intermediates assisted self-assembly two-dimensional Ti3C2T/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci Bull. 2021;66(9):914. https://doi.org/10.1016/j.scib.2020.12.026.

    Article  CAS  Google Scholar 

  21. Xu YN, Wang K, Han JW, Liu C, An YB, Meng QH, Li C, Zhang X, Sun XZ, Zhang YS, Mao LJ, Wei ZX, Ma YW. Scalable production of wearable solid-state Li-ion capacitors from N-doped hierarchical carbon. Adv Mater. 2020;32(45):2005531. https://doi.org/10.1002/adma.202005531.

    Article  CAS  Google Scholar 

  22. Wang L, Zhang X, Li C, Sun XZ, Wang K, Su FY, Liu FY, Ma YW. Recent advances in transition metal chalcogenides for lithium-ion capacitors. Rare Met. 2022;41(9):2971. https://doi.org/10.1007/s12598-022-02028-8.

    Article  CAS  Google Scholar 

  23. Zhou JH, Wang L, Yang MY, Wu JH, Chen FJ, Huang WJ, Han N, Ye HL, Zhao FP, Li YY, Li YG. Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv Mater. 2017;29(35):17020601. https://doi.org/10.1002/adma.201702061.

    Article  CAS  Google Scholar 

  24. Zhang X, He Q, Xu XM, Xiong TF, Xiao ZT, Meng JS, Wang XP, Wu L, Chen JH, Mai LQ. Insights into the storage mechanism of layered VS2 cathode in alkali metal-ion batteries. Adv Energy Mater. 2020;10(22):1904118. https://doi.org/10.1002/aenm.201904118.

    Article  CAS  Google Scholar 

  25. Zhang YJ, Li JL, Ma L, Li HB, Xu XT, Liu XJ, Lu T, Pan LK. Insights into the storage mechanism of 3D nanoflower-like V3S4 anode in sodium-ion batteries. Chem. Eng. J. 2022;427:130936. https://doi.org/10.1016/j.cej.2021.130936.

  26. Liu BL, Wang LQ, Zhu YQ, Peng H, Du CL, Yang XY, Zhao QQ, Hou JH, Cao CB. Ammonium-modified synthesis of vanadium sulfide nanosheet assemblies toward high sodium storage. ACS Nano. 2022;16(8):12900. https://doi.org/10.1021/acsnano.2c05232.

    Article  CAS  Google Scholar 

  27. Yu DX, Pang Q, Gao Y, Wei YJ, Wang CZ, Chen G, Du F. Hierarchical flower-like VS2 nanosheets – a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 2018;11:1. https://doi.org/10.1016/j.ensm.2017.09.002.

    Article  Google Scholar 

  28. Sun RM, Wei QL, Li QD, Luo W, An QY, Sheng JZ, Wang D, Chen W, Mai LQ. Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery. ACS Appl Mater Interfaces. 2015;7(37):20902. https://doi.org/10.1021/acsami.5b06385.

    Article  CAS  Google Scholar 

  29. Liu Y, Sun ZH, Sun X, Lin Y, Tan K, Sun JF, Liang LW, Hou LR, Yuan CZ. Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew Chem Int Ed Engl. 2020;59(6):2473. https://doi.org/10.1002/anie.201913343.

    Article  CAS  Google Scholar 

  30. Li YZ, Wang HW, Wang L, Mao ZF, Wang R, He BB, Gong YS, Hu XL. Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon Nanofiber films toward flexible high-power Na-ion capacitors. Small. 2019;15(9):1804539. https://doi.org/10.1002/smll.201804539.

    Article  CAS  Google Scholar 

  31. Liang T, Mao ZF, Li LY, Wang R, He BB, Gong YS, Jin J, Yan CJ, Wang HW. A mechanically flexible necklace-like architecture for achieving fast charging and high capacity in advanced lithium-ion capacitors. Small. 2022;18(27):2201792. https://doi.org/10.1002/smll.202201792.

    Article  CAS  Google Scholar 

  32. Wang HW, Xu DM, Jia G, Mao ZF, Gong YS, He BB, Wang R, Fan HJ. Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater. 2020;25:114. https://doi.org/10.1016/j.ensm.2019.10.024.

    Article  Google Scholar 

  33. Mao ZF, Wang HW, Chao DL, Wang R, He BB, Gong YS, Fan HJ. Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small. 2020;16(33):2001950. https://doi.org/10.1002/smll.202001950.

    Article  CAS  Google Scholar 

  34. Wang HW, Xu DM, Qiu RY, Tang SS, Li S, Wang R, He BB, Gong YS, Fan HJ. Aligned arrays of Na2Ti3O7 anobelts and nanowires on carbon nanofiber as high-rate and long-cycling anodes for sodium-ion hybrid capacitors. Small Structures. 2020;2(2):2000073. https://doi.org/10.1002/sstr.202000073.

    Article  CAS  Google Scholar 

  35. Mao ZF, Wang R, He BB, Gong YS, Wang HW. Large-area, uniform, aligned arrays of Na3(VO)2(PO4)F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors. Small. 2019;15(36):1902466. https://doi.org/10.1002/smll.201902466.

    Article  CAS  Google Scholar 

  36. Yang CH, Xiong JW, Ou X, Wu CF, Xiong XH, Wang JH, Huang K, Liu ML. A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Mater Today Energy. 2018;8:37. https://doi.org/10.1016/j.mtener.2018.02.001.

    Article  Google Scholar 

  37. Huang SF, Li ZP, Wang B, Zhang JJ, Peng ZQ, Qi RJ, Wang J, Zhao YF. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294. https://doi.org/10.1002/adfm.201706294.

    Article  CAS  Google Scholar 

  38. Liang HF, Shi HH, Zhang DF, Ming FW, Wang RW, Zhuo JQ, Wang ZC. Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem Mater. 2016;28(16):5587. https://doi.org/10.1021/acs.chemmater.6b01963.

    Article  CAS  Google Scholar 

  39. Fang WY, Zhao HB, Xie YP, Fang JH, Xu JQ, Chen ZW. Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl Mater Interfaces. 2015;7(23):13044. https://doi.org/10.1021/acsami.5b03124.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22279122), Zhejiang Provincial Natural Science Foundation of China (No. LZ22B030004) and the Foundation of State Key Laboratory of Coal Conversion (No. J22-23-909).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Wang or Huan-Wen Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 14799 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, ZF., Shi, XJ., Zhang, TQ. et al. Mechanically flexible V3S4@carbon composite fiber as a high-capacity and fast-charging anode for sodium-ion capacitors. Rare Met. 42, 2633–2642 (2023). https://doi.org/10.1007/s12598-023-02269-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02269-1

Keywords

Navigation