Skip to main content
Log in

Synergistic V5S8/CoS nanoparticles-embedded carbon nanofiber as binder-free flexible anode for sodium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The development of advanced electrode materials for sodium-ion batteries (SIBs) is crucial for the progression of energy storage technologies. In this study, we successfully fabricated V5S8/CoS nanoparticles confined within self-supported carbon nanofibers (CNFs) using a facile electrospinning method followed by a sulfidation process. Extensive characterization of the resulting V5S8/CoS-CNFs revealed their unique structural attributes, featuring a one-dimensional nanofiber morphology with enhanced Na+ transport pathways. In addition, V5S8 and CoS are typical semiconductors and have greater compatibility at the interface, which can enhance the synergistic effect in the composite. These V5S8/CoS-CNFs exhibited a remarkable reversible capacity of 201 mAh g−1 even at a high current density of 5 A g−1, along with a stable cycling performance of 165 mAh g−1 after 300 cycles at 2 A g−1. The incorporation of both V5S8 and CoS within the nanofiber structure substantially enhanced the pseudocapacitance effect, thereby improving sodium storage capabilities. The exceptional electrochemical properties of the binder-free V5S8/CoS-CNFs anode can be attributed to its heterogeneous composition embedded within CNFs. This composition effectively boosts the rate of sodium ion diffusion by generating a built-in electric field (BEF) at the V5S8 and CoS interface, alleviating volume stress during charge–discharge processes and enhancing overall conductivity. Our findings underscore the potential of V5S8/CoS-CNFs as high-performance anode materials for SIBs, offering valuable insights into the design and development of advanced electrode materials for future energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhang W, Lu J, Guo Z (2021) Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater Today 50:400–417. https://doi.org/10.1016/j.mattod.2021.03.015

    Article  CAS  Google Scholar 

  2. Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19:109–123. https://doi.org/10.1016/j.mattod.2015.10.009

    Article  CAS  Google Scholar 

  3. Liu C, Qiu Y, Liu Y et al (2022) Novel 3D grid porous Li4Ti5O12 thick electrodes fabricated by 3D printing for high performance lithium-ion batteries. J Adv Ceram 11:295–307. https://doi.org/10.1007/s40145-021-0533-7

    Article  CAS  Google Scholar 

  4. Li M, Lu J, Ji X et al (2020) Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat Rev Mater 5:276–294. https://doi.org/10.1038/s41578-019-0166-4

    Article  CAS  Google Scholar 

  5. Zhao L, Zhang T, Li W et al (2022) Engineering of sodium-ion batteries: opportunities and challenges. Engineering. https://doi.org/10.1016/j.eng.2021.08.032

    Article  PubMed  Google Scholar 

  6. Xia Q, Li W, Miao Z, Chou S, Liu H (2017) Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res 10:4055–4081. https://doi.org/10.1007/s12274-017-1671-7

    Article  CAS  Google Scholar 

  7. Ni J, Li L (2018) Self-supported 3D array electrodes for sodium microbatteries. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201704880

  8. Brehm W, Santhosha AL, Zhang Z et al (2020) Copper thiophosphate (Cu3PS4) as electrode for sodium-ion batteries with ether electrolyte. Adv Funct Mater 30. https://doi.org/10.1002/adfm.201910583

  9. Li S, He W, Liu B et al (2020) One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater 25:636–643. https://doi.org/10.1016/j.ensm.2019.09.021

    Article  Google Scholar 

  10. Guan B, Qi S-Y, Li Y, Sun T, Liu Y-G, Yi T-F (2021) Towards high-performance anodes: design and construction of cobalt-based sulfide materials for sodium-ion batteries. J Energy Chem 54:680–698. https://doi.org/10.1016/j.jechem.2020.06.005

    Article  CAS  Google Scholar 

  11. Zhang X, He Q, Xu X et al (2020) Insights into the storage mechanism of layered VS2 cathode in alkali metal-ion batteries. Adv Energy Mater 10. https://doi.org/10.1002/aenm.201904118

  12. Gao H, Niu J, Zhang C, Peng Z, Zhang Z (2018) A dealloying synthetic strategy for nanoporous bismuth–antimony anodes for sodium ion batteries. ACS Nano 12:3568–3577. https://doi.org/10.1021/acsnano.8b00643

    Article  CAS  PubMed  Google Scholar 

  13. Ni J, Sun M, Li L (2019) Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv Mater 31. https://doi.org/10.1002/adma.201902603

  14. Li W, Song Q, Li M et al (2021) Chemical heterointerface engineering on hybrid electrode materials for electrochemical energy storage. Small Methods 5. https://doi.org/10.1002/smtd.202100444

  15. Wang S, Liu S, Li X et al (2018) SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries. Chem Eur J 24:3873–3881. https://doi.org/10.1002/chem.201705855

    Article  CAS  PubMed  Google Scholar 

  16. Yeol Jo D, Park S-K (2022) Constructing hollow CoSe2/SnSe2 heterostructures covered with N-doped carbon shell for high-efficiency potassium-ion storage. Appl Surf Sci 571. https://doi.org/10.1016/j.apsusc.2021.151293

  17. Oh HG, Park SK (2022) Co-MOF derived MoSe2@CoSe2/N-doped carbon nanorods as high-performance anode materials for potassium ion batteries. Int J Energy Res 46:10677–10688. https://doi.org/10.1002/er.7866

    Article  CAS  Google Scholar 

  18. Du P, Cao L, Zhang B et al (2021) Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renewable Sustainable Energy Rev 151. https://doi.org/10.1016/j.rser.2021.111640

  19. Lim JB, Kim M, Park S-K (2022) Construction of N-doped multichannel carbon nanofibers embedded with amorphous VS4 nanoparticles for potassium-ion batteries with ultralong-term cycling stability. Appl Surf Sci 602. https://doi.org/10.1016/j.apsusc.2022.154332

  20. Zhang W, Yue Z, Miao W et al (2018) Carbon-encapsulated tube-wire Co3O4/MnO2 heterostructure nanofibers as anode material for sodium-ion batteries. Part Part Syst Charact 35. https://doi.org/10.1002/ppsc.201800138

  21. Wang L, Yang G, Peng S, Wang J, Yan W, Ramakrishna S (2020) One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning. Energy Storage Mater 25:443–476. https://doi.org/10.1016/j.ensm.2019.09.036

    Article  CAS  Google Scholar 

  22. Hou Z-d, Gao Y-y, Zhang Y, Wang J-g (2023) Research progress on freestanding carbon-based anodes for sodium energy storage. New Carbon Mater 38:230–243. https://doi.org/10.1016/s1872-5805(23)60725-5

    Article  CAS  Google Scholar 

  23. Homaeigohar S, Davoudpour Y, Habibi Y, Elbahri M (2017) The electrospun ceramic hollow nanofibers. Nanomaterials 7. https://doi.org/10.3390/nano7110383

  24. Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139. https://doi.org/10.1016/j.nanoen.2017.06.050

    Article  CAS  Google Scholar 

  25. Wang Y, Liu Y, Liu Y et al (2021) Recent advances in electrospun electrode materials for sodium-ion batteries. J Energy Chem 54:225–241. https://doi.org/10.1016/j.jechem.2020.05.065

    Article  CAS  Google Scholar 

  26. Liu H, He Y, Cao K et al (2021) Stimulating the reversibility of Sb2S3 anode for high-performance potassium-ion batteries. Small 17. https://doi.org/10.1002/smll.202008133

  27. Liu H, He Y, Zhang H et al (2021) Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure. Chem Eng J 425. https://doi.org/10.1016/j.cej.2021.130548

  28. Cao K, Zheng R, Wang S et al (2020) Boosting coulombic efficiency of conversion-reaction anodes for potassium-ion batteries via confinement effect. Adv Funct Mater 30. https://doi.org/10.1002/adfm.202007712

  29. Liu H, He Y, Zhang H et al (2021) Bi-continuous ion/electron transfer avenues enhancing the rate capability of SnS2 anode for potassium-ion batteries. J Power Sources 506. https://doi.org/10.1016/j.jpowsour.2021.230160

  30. Chen W, Liu X, Wu J et al (2023) Electrospun Fe1-xS@nitrogen-doped carbon fibers as anode material for sodium-ion batteries. J Electroanal Chem 929. https://doi.org/10.1016/j.jelechem.2022.117095

  31. Wanjun T, Donghua C (2007) Mechanism of thermal decomposition of cobalt acetate tetrahydrate. Chem Pap 61. https://doi.org/10.2478/s11696-007-0042-3

  32. Yang M, Su D, Zhang W et al (2021) Potassium storage mechanism of In2S3/C nanofibers as the anode for potassium ion batteries. Electrochim Acta 400. https://doi.org/10.1016/j.electacta.2021.139461

  33. Wang S, Yang Y, Quan W et al (2017) Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: capacity and conductivity enhancement by phase boundaries. Nano Energy 32:294–301. https://doi.org/10.1016/j.nanoen.2016.12.052

    Article  CAS  Google Scholar 

  34. Fang G, Wu Z, Zhou J et al (2018) Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv Energy Mater 8. https://doi.org/10.1002/aenm.201703155

  35. Zhao N, Qin J, Chu L et al (2020) Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy 78. https://doi.org/10.1016/j.nanoen.2020.105345

  36. Cheng Y, Huang J, Li J et al (2019) SnSe/r-GO composite with enhanced pseudocapacitance as a high-performance anode for Li-ion batteries. ACS Sustainable Chem Eng 7:8637–8646. https://doi.org/10.1021/acssuschemeng.9b00441

    Article  CAS  Google Scholar 

  37. Yang C, Ou X, Xiong X et al (2017) V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ Sci 10:107–113. https://doi.org/10.1039/c6ee03173k

    Article  CAS  Google Scholar 

  38. Xu L, Chen X, Guo W et al (2021) Co-construction of sulfur vacancies and carbon confinement in V5S8/CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries. Nanoscale 13:5033–5044. https://doi.org/10.1039/d0nr08788b

    Article  CAS  PubMed  Google Scholar 

  39. Guan B, Yang S-J, Tian S-H, Sun T, Wang P-F, Yi T-F (2023) In-situ-grown multidimensional Cu-doped Co1-S2@MoS2 on N-doped carbon nanofibers as anode materials for high-performance alkali metal ion batteries. J Colloid Interface Sci 650:369–380. https://doi.org/10.1016/j.jcis.2023.07.002

    Article  CAS  PubMed  Google Scholar 

  40. Yan Z, Sun Z, Qiu Y et al (2022) In situ F doping-induced multilayer FeS2@CoS@C hierarchical heterostructures for ultrafast lithium storage. Mater Today Energy 29. https://doi.org/10.1016/j.mtener.2022.101108

  41. Zhang S, Zhao H, Wang M, Li Z, Mi J (2018) Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon nanofibers as excellent anode material for sodium-ion batteries. Electrochim Acta 279:186–194. https://doi.org/10.1016/j.electacta.2018.05.082

    Article  CAS  Google Scholar 

  42. Lu H, Wu L, Xiao L, Ai X, Yang H, Cao Y (2016) Investigation of the effect of fluoroethylene carbonate additive on electrochemical performance of Sb-based anode for sodium-ion batteries. Electrochim Acta 190:402–408. https://doi.org/10.1016/j.electacta.2015.12.136

    Article  CAS  Google Scholar 

  43. Fan R, Zhao C, Ma J et al (2022) Rich self‐generated phase boundaries of heterostructured VS4/Bi2S3@C nanorods for long lifespan sodium-ion batteries. Small 18. https://doi.org/10.1002/smll.202205175

  44. Zhang X, Jie Liu X, Wang G, Wang H (2017) Cobalt disulfide nanoparticles/graphene/carbon nanotubes aerogels with superior performance for lithium and sodium storage. J Colloid Interface Sci 505:23–31. https://doi.org/10.1016/j.jcis.2017.05.028

    Article  CAS  PubMed  Google Scholar 

  45. Liu S, Zhang H, Zhou M, Chen X, Sun Y, Zhang Y (2021) V5S8 nanoparticles anchored on carbon nanofibers for fast and durable sodium and potassium ion storage. J Electroanal Chem 903. https://doi.org/10.1016/j.jelechem.2021.115841

  46. Zhang W, Yue Z, Wang Q et al (2020) Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem Eng J 380. https://doi.org/10.1016/j.cej.2019.122548

  47. Chen H, Li Y, Liu R et al (2023) Novel porous CoS1.097@carbon nanofibers as flexible and binder-free anode material for sodium-ion batteries. J Alloys Compd 956. https://doi.org/10.1016/j.jallcom.2023.170341

  48. Li W, Huang J, Feng L et al (2017) Facile in situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance. J Mater Chem A 5:20217–20227. https://doi.org/10.1039/c7ta05205g

    Article  CAS  Google Scholar 

  49. Zhang Y, Wang N, Sun C et al (2018) 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chem Eng J 332:370–376. https://doi.org/10.1016/j.cej.2017.09.092

    Article  CAS  Google Scholar 

  50. Li W, Huang J, Cao L, Feng L, Yao C (2018) Controlled construction of 3D self-assembled VS4 nanoarchitectures as high-performance anodes for sodium-ion batteries. Electrochim Acta 274:334–342. https://doi.org/10.1016/j.electacta.2018.04.106

    Article  CAS  Google Scholar 

  51. Sun R, Qin Z, Li Z, Fan H, Lu S (2020) Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode. Dalton Trans 49:14237–14242. https://doi.org/10.1039/d0dt03132a

    Article  CAS  PubMed  Google Scholar 

  52. Feng Y, Xu M, He T et al (2021) CoPSe: a new ternary anode material for stable and high-rate sodium/potassium-ion batteries. Adv Mater 33. https://doi.org/10.1002/adma.202007262

  53. Tang L-b, Zhang B, Peng T et al (2021) MoS2/SnS@C hollow hierarchical nanotubes as superior performance anode for sodium-ion batteries. Nano Energy 90. https://doi.org/10.1016/j.nanoen.2021.106568

  54. Wang B, Cheng Y, Su H et al (2020) Boosting transport kinetics of cobalt sulfides yolk–shell spheres by anion doping for advanced lithium and sodium storage. Chemsuschem 13:4078–4085. https://doi.org/10.1002/cssc.202001261

    Article  CAS  PubMed  Google Scholar 

  55. Zhu J, Wang J, Li G, Huang L, Cao M, Wu Y (2020) Heterogeneous structured pomegranate-like Bi@C nanospheres for high-performance sodium storage. J Mater Chem A 8:25746–25755. https://doi.org/10.1039/d0ta09164b

    Article  CAS  Google Scholar 

  56. Mahmood A, Li S, Ali Z et al (2019) Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv Mater 31. https://doi.org/10.1002/adma.201805430

  57. Liu Y, Xu Y, Han Y et al (2019) Facile synthesis of SnSe2 nanoparticles supported on graphite nanosheets for improved sodium storage and hydrogen evolution. J Power Sources 436. https://doi.org/10.1016/j.jpowsour.2019.226860

Download references

Acknowledgements

The Zhejiang Provincial Key R&D Program (Grant No. 2023C04045) provided financial assistance for this project.

Author information

Authors and Affiliations

Authors

Contributions

Junjie Dai: experimental design, method research, data arrangement, investigation and analysis, paper writing. Fangshun Zhu: implementation of the experimental process, data collection, data collation, paper revision. Balaji Murugesan: research implementation, paper design, paper revision, technical support. Qing Zhang: experimental assistance, data acquisition. Xiaochong Zhou and Wenbin Ni: statistical analysis, research and technical support. Yurong Cai: programme design, project management, guidance support, final review of papers, funding.

Corresponding authors

Correspondence to Wenbin Ni or Yurong Cai.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130266 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Zhu, F., Murugesan, B. et al. Synergistic V5S8/CoS nanoparticles-embedded carbon nanofiber as binder-free flexible anode for sodium-ion batteries. Ionics 30, 217–227 (2024). https://doi.org/10.1007/s11581-023-05268-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05268-5

Keywords

Navigation