Skip to main content

Advertisement

Log in

Fluorinated graphite nanosheets for ultrahigh-capacity lithium primary batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Traditional fluorinated carbon (CFx) batteries are greatly limited in their applications mostly because of inferior rate performances, initial voltage delay and low fluorine-to-carbon ratio below one. This work innovatively applies graphite nanosheets (NSs) as carbon source and optimizes the fluorination process at temperature range of 250–400 °C to prepare CFx NSs. Specifically, the edge defects and –CF2, –CF3 perfluorinated functional group active sites are introduced into NSs in the form of covalent/semi-covalent/semi-ionic bonds by adjusting the temperature which also breaks the limit of fluorocarbon ratio to achieve ultra-thin microstructure with high performances. In the battery assembly process, a series of discharge electrolytes are introduced to improve the quality and realize the ultrahigh specific capacity. The optimized CFx-400 °C NSs deliver an excellent specific capacity of 921 mAh·g−1 at a current density of 10 mA·g−1 with a high energy density value of 2210 Wh·kg−1. Moreover, the new electrolytes are selected which not only serve as electrolytes but also can be loaded on CFx surface for various discharge reactions without affecting the actual battery function. Thus, the lightweight tabs and current collectors are selected to control the loading of active material and injection coefficient. The presented battery design strategy provides a new strategy to achieve an ultrahigh specific energy density of 1116 Wh·kg−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guérin K, Dubois M, Houdayer A, Hamwi A. Applicative performances of fluorinated carbons through fluorination routes: a review. J Fluorine Chem. 2012;134:11.

    Article  Google Scholar 

  2. Zhang Q, D’Astorg S, Xiao P, Zhang X, Lu L. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries. J Power Sources. 2010;195(9):2914.

    Article  CAS  Google Scholar 

  3. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    Article  CAS  Google Scholar 

  4. Zhang Q, Takeuchi KJ, Takeuchi ES, Marschilok AC. Progress towards high-power Li/CFx batteries: electrode architectures using carbon nanotubes with CFx. Phys Chem Chem Phys. 2015;17(35):22504.

    Article  CAS  Google Scholar 

  5. Dose WM, Donne SW. Optimising heat treatment environment and atmosphere of electrolytic manganese dioxide for primary Li/MnO2 batteries. J Power Sources. 2014;247:852.

    Article  CAS  Google Scholar 

  6. Cheng S, Yuan Z, Ye X, Zhang F, Liu J. Empirical prediction model for Li/SOCl2 cells based on the accelerated degradation test. Microelectron Reliab. 2015;55(1):101.

    Article  CAS  Google Scholar 

  7. Guérin K, Yazami R, Hamwi A. Hybrid-type graphite fluoride as cathode material in primary lithium batteries. Electrochem Solid-State Lett. 2004;7(6):A159.

    Article  Google Scholar 

  8. Yazami R, Hamwi A, Guérin K, Ozawa Y, Dubois M, Giraudet J, Masin F. Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries. Electrochem Commun. 2007;9(7):1850.

    Article  CAS  Google Scholar 

  9. Li Y, Feng Y, Feng W. Deeply fluorinated multi-wall carbon nanotubes for high energy and power densities lithium/carbon fluorides battery. Electrochim Acta. 2013;107:343.

    Article  CAS  Google Scholar 

  10. Sun C, Feng Y, Li Y, Qin C, Zhang Q, Feng W. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale. 2014;6(5):2634.

    Article  CAS  Google Scholar 

  11. Ahmad Y, Dubois M, Guerin K, Hamwi A, Flahaut E. High energy density of primary lithium batteries working with sub-fluorinated few walled carbon nanotubes cathode. J Alloy Compd. 2017;726:852.

    Article  CAS  Google Scholar 

  12. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    Article  CAS  Google Scholar 

  13. Tressaud A, Groult H. Fluorinated carbonaceous nanoparticles as active material in primary lithium battery. J Fluorine Chem. 2019;219:1.

    Article  CAS  Google Scholar 

  14. Peng C, Li Y, Yao F, Fu H, Zhou R, Feng Y, Feng W. Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries. Carbon. 2019;153:783.

    Article  CAS  Google Scholar 

  15. Sosunov AV, Ziolkowska DA, Ponomarev RS, Henner VK, Karki B, Smith N, Sumanasekera G, Jasinski JB. CFx primary batteries based on fluorinated carbon nanocages. New J Chem. 2019;43(33):783.

    Article  Google Scholar 

  16. Chen JX, Zhang XQ, Li BQ, Wang XM, Shi P, Zhu W, Chen A, Jin Z, Xiang R, Huang JQ. The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes. J Energy Chem. 2020;47:128.

    Article  Google Scholar 

  17. Nagasubramanian G, Rodriguez M. Performance enhancement at low temperatures and in situ X-ray analyses of discharge reaction of Li/(CFx)n cells. J Power Sources. 2007;170(1):179.

    Article  CAS  Google Scholar 

  18. Whitacre JF, West WC, Smart MC, Yazami R, Surya Prakash GK, Hamwi A, Ratnakumar BV. Enhanced low-temperature performance of Li–CFx batteries. Electrochem Solid-State Lett. 2007;10(7):A166.

    Article  CAS  Google Scholar 

  19. Ignatova AA, Yarmolenko OV, Tulibaeva GZ, Shestakov AF, Fateev SA. Influence of 15-crown-5 additive to a liquid electrolyte on the performance of Li/CFxsystems at temperatures up to −50 °C. J Power Sources. 2016;309:116.

    Article  CAS  Google Scholar 

  20. Dubois M, Guérin K, Ahmad Y, Batisse N, Mar M, Frezet L, Hourani W, Bubendorff JL, Parmentier J, Hajjar-Garreau S, Simon L. Thermal exfoliation of fluorinated graphite. Carbon. 2014;77:688.

    Article  CAS  Google Scholar 

  21. Dai Y, Cai S, Wu L, Yang W, Xie J, Wen W, Zheng JC, Zhu Y. Surface modified CFx cathode material for ultrafast discharge and high energy density. J Mater Chem A. 2014;2(48):20896.

    Article  CAS  Google Scholar 

  22. Wang J, Sun M, Liu Y, Lin J, Wang L, Xu Z, Wang W, Yuan Z, Liu J, Bai X. Unraveling nanoscale electrochemical dynamics of graphite fluoride by in situ electron microscopy: key difference between lithiation and sodiation. J Mater Chem A. 2020;8(12):6105.

    Article  CAS  Google Scholar 

  23. Gong P, Wang Z, Wang J, Wang H, Li Z, Fan Z, Xu Y, Han X, Yang S. One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage. J Mater Chem. 2012;22(33):16950.

    Article  CAS  Google Scholar 

  24. Lee YS, Cho TH, Lee BK, Rho JS, An KH, Lee YH. Surface properties of fluorinated single-walled carbon nanotubes. J Fluorine Chem. 2003;120(2):99.

    Article  CAS  Google Scholar 

  25. Guérin K, Pinheiro JP, Dubois M, Fawal Z, Masin F, Yazami R, Hamwi A. Synthesis and characterization of highly fluorinated graphite containing sp2 and sp3 carbon. Chem Mater. 2004;16(9):1786.

    Article  Google Scholar 

  26. Wan Y, Qian X, Jia N, Wang Z, Li H, Zhao D. Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon. Chem Mater. 2008;20(3):1012.

    Article  CAS  Google Scholar 

  27. An YB, Chen S, Zou MM, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.

    Article  CAS  Google Scholar 

  28. Xu Z, Buehler MJ. Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology. 2009;20(18):185701.

    Article  Google Scholar 

  29. Li Y, Wu X, Liu C, Wang S, Zhou P, Zhou T, Miao Z, Xing W, Zhuo S, Zhou J. Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: effect of graphitization of carbon nanotubes. J Mater Chem A. 2019;7(12):7128.

    Article  CAS  Google Scholar 

  30. Mazánek V, Jankovský O, Luxa J, Sedmidubský D, Janoušek Z, Šembera F, Mikulics M, Sofer Z. Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene. Nanoscale. 2015;7(32):13646.

    Article  Google Scholar 

  31. Zhou P, Weng J, Liu X, Li Y, Wang L, Wu X, Zhou T, Zhou J, Zhuo S. Urea-assistant ball-milled CFx as electrode material for primary lithium battery with improved energy density and power density. J Power Sources. 2019;414:210.

    Article  CAS  Google Scholar 

  32. Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES. Properties of fluorinated graphene films. Nano Lett. 2010;10(8):3001.

    Article  CAS  Google Scholar 

  33. Nair RR, Ren W, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, Cheng HM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva IV, Grigorenko AN, Novoselov KS, Geim AK. Fluorographene: a two-dimensional counterpart of teflon. Small. 2010;6(24):2877.

    Article  CAS  Google Scholar 

  34. Bon SB, Valentini L, Verdejo R, Garcia Fierro JL, Peponi L, Lopez-Manchado MA, Kenny JM. Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chem Mater. 2009;21(14):3433.

    Article  Google Scholar 

  35. Ahmad Y, Dubois M, Guérin K, Hamwi A, Zhang W. Pushing the theoretical limit of Li–CFx batteries using fluorinated nanostructured carbon nanodiscs. Carbon. 2015;94:1061.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51972045) and the Fundamental Research Funds for the Chinese Central Universities, China (No. ZYGX2019J025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Wen Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XX., Zhang, GJ., Bai, BS. et al. Fluorinated graphite nanosheets for ultrahigh-capacity lithium primary batteries. Rare Met. 40, 1708–1718 (2021). https://doi.org/10.1007/s12598-020-01692-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01692-y

Keywords

Navigation