Skip to main content

Advertisement

Log in

Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanocomposites (defined as MoS2-C@TiO2) were prepared through a facile one-step pyrolysis reaction technique. In this unique nanostructure, the TiO2 nanosheets with stable structure serve as the backbones, and carbon coating and few-layer MoS2 tightly adhere onto the surface of the TiO2. It needs to be pointed out that the carbon coating improves the overall electronic conductivity and the few-layer MoS2 facilitates the diffusion of lithium ions and offers more active sites for lithium-ion storage. As a result, when evaluated as lithium-ion battery anodes, the MoS2-C@TiO2 nanocomposites exhibit markedly enhanced lithium storage capability compared with pure TiO2. A high specific capacity of 180 mA·h·g−1 has been achieved during the preliminary cycles, and the specific capacity can maintain 160 mA·h·g−1 at a high current density of 1C (1C=167 mA·g−1) even after 300 discharge/charge cycles, indicating the great potential of the MoS2-C@TiO2 on energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.

    Article  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28.

    Article  Google Scholar 

  3. Zhong YR, Yang M, Zhou XL, Zhou Z. Structural design for anodes of lithium-ion batteries: emerging horizons from materials to electrodes. Mater Horiz. 2015;2(6):553.

    Article  Google Scholar 

  4. Yi J, Tan C, Li W, Lei J, Hao L. Preparation of anatase TiO2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries. Rare Met. 2010;29(5):505.

    Article  Google Scholar 

  5. Yang SB, Feng XL, Mullen K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater. 2011;23(31):3575.

    Article  Google Scholar 

  6. Yi J, Li X, Hu S, Li W, Zeng R, Fu Z, Chen L. TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries. Rare Met. 2011;30(6):589.

    Article  Google Scholar 

  7. Nam SH, Shim HS, Kim YS, Dar MA, Kim JG, Kim WB. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl Mater Interfaces. 2010;2(7):2046.

    Article  Google Scholar 

  8. Yan JY, Song HH, Yang SB, Yan JD, Chen XH. Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochim Acta. 2008;53(22):6351.

    Article  Google Scholar 

  9. Mobtaker H, Ahmadi SJ, Dehaghi SM, Yousefi T. Coupling system application in photocatalytic degradation of methylorange by TiO2, TiO2/SiO2 and TiO2/SiO2/Ag. Rare Met. 2015;34(12):851.

    Article  Google Scholar 

  10. Chen B, Zhao NQ, Guo LC, He F, Shi CS, He CN, Li JJ, Liu EZ. Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries. Nanoscale. 2015;7(30):12895.

    Article  Google Scholar 

  11. Qiu J, Zhang P, Ling M, Li S, Liu P, Zhao H, Zhang S. Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl Mater Interfaces. 2012;4(7):3636.

    Article  Google Scholar 

  12. Park SJ, Kim YJ, Lee H. Synthesis of carbon-coated TiO2 nanotubes for high-power lithium-ion batteries. J Power Sources. 2011;196(11):5133.

    Article  Google Scholar 

  13. Xia T, Zhang W, Wang ZH, Zhang YL, Song XY, Murowchick J, Battaglia V, Liu G, Chen X. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy. 2014;6:109.

    Article  Google Scholar 

  14. Xing Z, Asiri AM, Obaid AY, Sun X, Ge X. Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Adv. 2014;4(18):9061.

    Article  Google Scholar 

  15. Liu L, Fan Q, Sun C, Gu X, Li H, Gao F, Chen Y, Dong L. Synthesis of sandwich-like TiO2@C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J Power Sources. 2013;221:141.

    Article  Google Scholar 

  16. Moitzheim S, Nimisha CS, Deng S, Cott DJ, Detavernier C, Vereecken PM. Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries. Nanotechnology. 2014;25(50):504008.

    Article  Google Scholar 

  17. Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR. MoS2 and WS2 analogues of graphene. Angew Chem Int Ed. 2010;122(24):4153.

    Article  Google Scholar 

  18. Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. 2010;105(13):136805.

    Article  Google Scholar 

  19. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Few-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147.

    Article  Google Scholar 

  20. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010;10(4):1271.

    Article  Google Scholar 

  21. Wang Z, Chen T, Chen W, Chang K, Ma L, Huang G, Chen D, Lee JY. CTAB-assisted synthesis of few-layer MoS2–graphene composites as anode materials of Li-ion batteries. J Mater Chem A. 2013;1(6):2202.

    Article  Google Scholar 

  22. Zhuang W, Li L, Zhu J, An R, Lu L, Lu X, Wu X, Ying H. Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectroChem. 2015;2(3):374.

    Article  Google Scholar 

  23. Xu X, Fan Z, Ding S, Yu D, Du Y. Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale. 2014;6(10):5245.

    Article  Google Scholar 

  24. Mao M, Mei L, Guo D, Wu L, Zhang D, Li Q, Wang T. High electrochemical performance based on the TiO2 nanobelt@few-layered MoS2 structure for lithium-ion batteries. Nanoscale. 2014;6(21):12350.

    Article  Google Scholar 

  25. Han X, Kuang Q, Jin M, Xie Z, Zheng L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc. 2009;131(9):3152.

    Article  Google Scholar 

  26. Li X, Hu Y, Sanchez-Molina I, Zhou Y, Yu F, Haque SA, Wu W, Hua J, Tian H, Robertson N. Insight into quinoxaline containing D–π–A dyes for dye-sensitized solar cells with cobalt and iodine based electrolytes: the effect of π-bridge on the HOMO energy level and photovoltaic performance. J Mater Chem A. 2015;3(43):21733.

    Article  Google Scholar 

  27. Chang K, Chen W. Few-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J Mater Chem. 2011;21(43):17175.

    Article  Google Scholar 

  28. Nur H. Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater Sci Eng B. 2006;133(1):49.

    Article  Google Scholar 

  29. Baharvand A, Ali R, Yusof AM, Ibrahim AN, Chandren S, Nur H. Preparation of anatase hollow TiO2 spheres and their photocatalytic activity in the photodegradation of chlorpyrifos. J Chin Inst Chem Soc. 2014;61(11):1211.

    Article  Google Scholar 

  30. Kumaresan L, Mahalakshmi M, Palanichamy M, Murugesan V. Synthesis, characterization, and photocatalytic activity of Sr2+ doped TiO2 nanoplates. Ind Eng Chem Res. 2010;49(4):1480.

    Article  Google Scholar 

  31. Wu HB, Chen JS, Hng HH, Lou XW. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale. 2012;4(8):2526.

    Article  Google Scholar 

  32. Zhang W, Xiao X, Zheng L, Wan C. Fabrication of TiO2/MoS2 composite photocatalyst and its photocatalytic mechanism for degradation of methyl orange under visible light. Can J Chem Eng. 2015;93(9):1594.

    Article  Google Scholar 

  33. Chen B, Zhao NQ, Wei CP, Zhou JW, He F, Shi CS, He CN, Liu EZ. Multi-functional integration of pore P25@C@MoS2 core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties. Appl Surf Sci. 2017;. https://doi.org/10.1016/j.apsusc.2017.01.003.

    Google Scholar 

  34. Wu X, Chen Z, Lu GQM, Wang L. Nanosized anatase TiO2 few crystals with tunable exposed (001) facets for enhanced energy conversion efficiency of dye-sensitized solar cells. Adv Funct Mater. 2011;21(21):4167.

    Article  Google Scholar 

  35. Yu J, Fan J, Lv K. Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale. 2010;2(10):2144.

    Article  Google Scholar 

  36. Liu C, Wang L, Tang Y, Luo S, Liu Y, Zhang S, Zeng Y, Xu Y. Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl Catal B Environ. 2015;164:1.

    Article  Google Scholar 

  37. Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small. 2013;9(7):140.

    Article  Google Scholar 

  38. Dominko R, Arcon D, Mrzel A, Zorko A, Cevc P, Venturini P, Gaberscek M, Remskar M, Mihailovic D. Dichalcogenide nanotube electrodes for Li-ion batteries. Adv Mater. 2002;14(21):1531.

    Article  Google Scholar 

  39. Xiao J, Wang X, Yang XQ, Xun S, Liu G, Koech PK, Liu J, Lemmon JP. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv Funct Mater. 2011;21(15):2840.

    Article  Google Scholar 

  40. Shidpour R, Manteghian M. A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale. 2010;2(8):1429.

    Article  Google Scholar 

  41. Shi Y, Wang Y, Wong JI, Tan AY, Hsu CL, Li LJ, Lu YC, Yang HY. Self-assembly of hierarchical MoS x /CNT nanocomposites (2 < x < 3): towards high performance anode materials for lithium ion batteries. Sci Rep. 2013;3:2169.

    Article  Google Scholar 

  42. Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater. 2013;25(8):1180.

    Article  Google Scholar 

  43. Jing Y, Ortiz-Quiles EO, Cabrera CR, Chen ZF, Zhou Z. Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries. Electrochim Acta. 2014;147:392.

    Article  Google Scholar 

  44. Li YF, Wu DH, Zhou Z, Cabrera CR, Chen ZF. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. J Phys Chem Lett. 2012;3(16):2221.

    Article  Google Scholar 

  45. Zhu Y, Xu Y, Liu Y, Luo C, Wang C. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale. 2013;5(2):780.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51472177) and the China-EU Science and Technology Cooperation Project (No. SQ2013ZOA100006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Sheng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, HH., Shi, CS., Zhao, NQ. et al. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 37, 107–117 (2018). https://doi.org/10.1007/s12598-017-0983-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0983-9

Keywords

Navigation