Skip to main content
Log in

Hydrogenation behaviors and characteristics of bulk Ti–6Al–4V alloy at different isothermal temperatures

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The bulk Ti–6Al–4V alloy was hydrogenated at the temperature range of 723–973 K, and the hydrogen absorption characteristics and hydrogen absorption kinetics were investigated. The results show that there are two types of hydrogen absorption characteristics at different temperatures. The hydrogen content decreases, and the time reaching reaction equilibrium is shorten with the isothermal hydrogenation temperature increasing. Meanwhile, the mechanism of the hydrogen absorption kinetics is different at different temperatures. The incubation period exists at the initial hydrogen absorption stage below 823 K, and Ka2 (the reaction rate constant of Stage 2) ≫ Ka1 (the reaction rate constant of Stage 1). And there is no incubation period over 823 K, Ka1 ≫ Ka2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Su YQ, Wang L, Luo LS, Liu XW, Guo JJ. Investigation of melt hydrogenation on the microstructure and deformation behavior of Ti–6Al–4V alloy. Int J Hydrog Energy. 2011;36(1):1027.

    Article  CAS  Google Scholar 

  2. Yu CY, Shen CC, Perng TP. Microstructure of Ti–6Al–4V processed by hydrogenation. Scripta Mater. 2006;55(11):1023.

    Article  Google Scholar 

  3. Sahoo R, Jha BB, Sahoo TK. Effect of primary alpha phase variation on mechanical behaviour of Ti–6Al–4V alloy. Mater Sci Technol. 2015;31(12):1486.

    Article  CAS  Google Scholar 

  4. Oh JM, Roh KM, Lee BK, Suh CY, Kim W, Kwon HJ, Lim JW. Preparation of low oxygen content alloy powder from Ti binary alloy scrap by hydrogenation–dehydrogenation and deoxidation process. J Alloys Compd. 2014;593(4):61.

    Article  CAS  Google Scholar 

  5. Qazi JI, Senkov ON, Rahim J, Froes FH. Kinetics of martensite decomposition in Ti–6Al–4V–xH alloys. Mater Sci Eng A. 2003;359(1):137.

    Article  Google Scholar 

  6. Shan DB, Zong YY, Lu TF, Lv Y. Microstructural evolution and formation mechanism of FCC titanium hydride in Ti–6Al–4V–xH alloys. J Alloys Compd. 2007;427(1):229.

    Article  CAS  Google Scholar 

  7. Senkov ON, Froes EH. Thermohydrogen processing of titanium alloys. Int J Hydrog Energy. 1999;24(6):565.

    Article  CAS  Google Scholar 

  8. Tal-Gutelmacher E, Eliezer ED. Hydrogen cracking in titanium-based alloys. J Alloys Compd. 2005;404:621.

    Article  Google Scholar 

  9. Froes FH, Senkov ON, Qazi JI. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. Int Mater Rev. 2004;49(3–4):227.

    Article  CAS  Google Scholar 

  10. He WJ, Zhang SH, Song HW, Cheng M. Hydrogen-induced hardening and softening of a β-titanium alloy. Scripta Mater. 2009;61(1):16.

    Article  CAS  Google Scholar 

  11. Sun ZG, Hou HL, Zhou WL, Wang YQ, Li ZQ. The effect of hydrogen on microstructures evolution and deformation behaviors of Ti–6Al–4V alloys. J Alloys Compd. 2009;476(1):550.

    Article  CAS  Google Scholar 

  12. Ivasishin OM, Anokhin VM, Demidik AN, Savvakin DG. Cost-effective blended elemental powder metallurgy of titanium alloys for transportation application. Key Eng Mater. 2000;188:55.

    Article  CAS  Google Scholar 

  13. Jung SA, Kwon HJ, Roh KM, Suh CY, Kim W. Ti-based solid solution carbonitrides prepared from Ti-alloy scraps via a hydrogenation-dehydrogenation process and high-energy milling. Met Mater Int. 2015;21(5):923.

    Article  CAS  Google Scholar 

  14. Zhang TB, Wang XF, Hu R, Li JS, Yang XW, Xue XY, Fu HZ. Hydrogen absorption properties of Zr(V1−xFex)2 intermetallic compounds. Int J Hydrog Energy. 2012;37(3):2328.

    Article  CAS  Google Scholar 

  15. Kumar S, Taxak M, Krishnamurthy N. Hydrogen absorption kinetics of V4Cr4Ti alloy prepared by aluminothermy. Int J Hydrog Energy. 2012;37(4):3283.

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhang SQ. Hydrogenation characteristics of Ti–6Al–4V cast alloy and its microstructural modification by hydrogen treatment. Int J Hydrog Energy. 1997;22(2):161.

    Article  Google Scholar 

  17. Guo Q, Hou H, Ren X. Hydrogen absorption kinetics of porous Ti6Al4V alloys. J Alloys Compd. 2009;486(1):754.

    Article  CAS  Google Scholar 

  18. Hirooka Y, Miyake M, Sano T. A study of hydrogen absorption and desorption by titanium. J Nucl Mater. 1981;96(3):227.

    Article  CAS  Google Scholar 

  19. Grabke HJ, Horz G. Kinetics and mechanisms of gas-metal interactions. Annu Rev Mater Sci. 1977;7:155.

    Article  CAS  Google Scholar 

  20. Martin M, Gommel C, Borkhart C, Fromm E. Absorption and desorption kinetics of hydrogen storage alloys. J Alloys Compd. 1996;238(1):193.

    Article  CAS  Google Scholar 

  21. Borgschulte A, Gremaud R, Griessen R. Interplay of diffusion and dissociation mechanisms during hydrogen absorption in metals. Phys Rev B. 2009;78:9.

    Google Scholar 

  22. Lin HC, Lin KM, Sung CW, Wu KC. Characterizations of activation and anti-poisoning in an LmNi4.8Al0.2 hydrogen storage alloy. Int J Hydrog Energy. 2007;32(13):2494.

    Article  CAS  Google Scholar 

  23. Clarke CF, Hardie D, Ikeda BM. Hydrogen-induced cracking of commercial purity titanium. Corros Sci. 1997;39(9):1545.

    Article  CAS  Google Scholar 

  24. Lee SM, Perng TP. Microstructural correlations with the hydrogenation kinetics of FeTi1+ξ alloys. J Alloys Compd. 1991;177(6):107.

    Article  CAS  Google Scholar 

  25. Mintz MH, Bloch J. Evaluation of the kinetics and mechanisms of hybriding reactions. Prog Solid State Chem. 1985;16(3):163.

    Article  CAS  Google Scholar 

  26. Jiménez C, Moreno FG, Pfretzschner B, Klaus M. Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction. Acta Mater. 2011;59(16):6318.

    Article  Google Scholar 

  27. Li MQ, Zhang WF, Zhu TK, Hou HL, Li ZQ. Effect of hydrogen on microstructure of Ti–6Al–4V alloys. Rare Metal Mat Eng. 2010;39(1):1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Sichuan Province Science and Technology Project (No. 2013VTZC04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Gui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Wang, CM., Xiao, SF. et al. Hydrogenation behaviors and characteristics of bulk Ti–6Al–4V alloy at different isothermal temperatures. Rare Met. 38, 1131–1135 (2019). https://doi.org/10.1007/s12598-016-0852-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0852-y

Keywords

Navigation