Skip to main content
Log in

Ti-based solid solution carbonitrides prepared from Ti-alloy scraps via a hydrogenation-dehydrogenation process and high-energy milling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ti-based solid-solution carbonitrides (Ti,Al,V)(CN) and (Ti,Al,Mo,V)(CN), were synthesized successfully using Ti-6Al-4V (Ti-64) and Ti-8Al-1Mo-1V (Ti-811) alloy scraps via hydrogenation-dehydrogenation and highenergy milling processes. A single phase of (Ti,Al,V)(CN) could be readily synthesized by the high-energy milling of Ti-64 alloy with graphite in a nitrogen atmosphere regardless of the carbon content. On the other hand, for the Ti-811 alloy, metallic Mo and various Mo-less carbides, in this case Ti2AlC, Ti3AlC2, and Ti3AlC, were also formed in addition to (Ti,Al,Mo,V)(CN) due to the low nitrogen affinity of Mo. The solid-solution carbonitrides consolidated by spark plasma sintering revealed excellent mechanical properties (HV: 19.1-20.6 GPa, KIC: 5.2-6.4 MPa·m1/2) due to the alloying effect of Al, Mo, and V in Ti(CN). These values are superior to those of typical Ti(CN)–based ceramic composites (HV: 16-20 GPa, KIC: 3.2-5.5 MPa·m1/2). We believe that the suggested method would be a valuable option for the production of Ti-based solid-solution carbonitrides with decent mechanical properties economically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ettmayer, Annu. Rev. Mater. Sci. 19, 145 (1989).

    Article  Google Scholar 

  2. S. Kang, Comprehensive Hard Materials (eds. D. Mari, L. Llanes, and C. E. Nebel), pp. 139–181, Elsevier Ltd., Boston (2014).

  3. Y. Choi, Met. Mater. Int. 20, 531 (2014).

    Article  Google Scholar 

  4. J. Jung and S. Kang, J. Am. Ceram. Soc. 90, 2178 (2007).

    Article  Google Scholar 

  5. S. Kim, K.-H. Min, and S. Kang, J. Am. Ceram. Soc. 86, 1761 (2003).

    Article  Google Scholar 

  6. J. Jung and S. Kang, Acta Mater. 52, 1379 (2004).

    Article  Google Scholar 

  7. S. Zhou, W. Zhao, and W. Xiong, Int. J. Refract. Met. Hard Mater. 27, 26 (2009).

    Article  Google Scholar 

  8. W. Wan, J. Xiong, Z. Guo, H. Du, and L. Tang, Int. J. Refract. Met. Hard Mater. 45, 86 (2014).

    Article  Google Scholar 

  9. Y. Peng, H. Miao, and Z. Peng, Int. J. Refract. Met. Hard Mater. 39, 78 (2013).

    Article  Google Scholar 

  10. P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, Prog. Mater. Sci. 51, 1032 (2006).

    Article  Google Scholar 

  11. A. Horling, L. Hultman, M. Oden, J. Sjolen, and L. Karlsson, Surf. Coat. Tech. 191, 384 (2005).

    Article  Google Scholar 

  12. G. S. Fox-Rabinovich, J. L. Endrino, B. D. Beake, A. I. Kovalev, S. C. Veldhuis, L. Ning, F. Fontaine, and A. Gray, Surf. Coat. Tech. 201, 3524 (2006).

    Article  Google Scholar 

  13. E. B. Clark and B. Roebuck, Int. J. Refract. Met. Hard Mater. 11, 23 (1992).

    Article  Google Scholar 

  14. S. Park and S. Kang, Scripta Mater. 52, 129 (2005).

    Article  Google Scholar 

  15. J. Jung and S. Kang, Script Mater. 56, 561 (2007).

    Article  Google Scholar 

  16. G. Y. Yoo, C. H. Park, J.-K. Hong, S.-E. Kim, N. H. Kang, and J.-T. Yeom, Korean J. Met. Mater. 51, 307 (2013).

    Google Scholar 

  17. T. Moskalewicz, S. Zimowski, B. Wendler, P. Nolbrzak, and A. Czyrska-Filemonowicz, Met. Mater. Int. 20, 269 (2014).

    Article  Google Scholar 

  18. J. M. Oh, K. M. Roh, B. K. Lee, C. Y. Suh, W. Kim, and H. Kwon, J. Alloys Compd. 593, 61 (2014).

    Article  Google Scholar 

  19. D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Clauer, J. Mater. Sci. 20, 1873 (1985).

    Article  Google Scholar 

  20. I. Barin, Thermochemical Data of Pure Substances, pp.42–1628, VCH Verlagsgesellschaft mbH, Weinheim (1989).

    Google Scholar 

  21. H. Jehn and P. Ettmayer, J. Less-common Met. 58, 85 (1978).

    Article  Google Scholar 

  22. D. S. Park and Y. D. Lee, J. Am. Ceram. Soc. 82, 3150 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjung Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, SA., Kwon, H., Roh, KM. et al. Ti-based solid solution carbonitrides prepared from Ti-alloy scraps via a hydrogenation-dehydrogenation process and high-energy milling. Met. Mater. Int. 21, 923–928 (2015). https://doi.org/10.1007/s12540-015-5050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5050-1

Keywords

Navigation