Skip to main content
Log in

Synthesis and characterization of C, N-codoped TiO2 nanotubes/nanorods with visible-light activity

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Visible-light response C, N-codoped TiO2 nanotubes with high aspect ratios were prepared by a two-step method. First the TiO2 nanotubes were synthesized by an ion-exchange method, and then the nanotubes were calcined at different temperatures with melamine as nitrogen and carbon source. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffusive reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherms were employed to characterize the as-prepared samples. The results show that the nanotubular structure is destroyed when the calcination temperature is higher than 823 K. Further increase the temperature to 923 K, TiO2 is reduced to TiO. The photocatalytic activity of the codoped TiO2 nanotubes/nanorods was evaluated by degradation of Rhodamine B under visible-light irradiation (> 420 nm). Compared with N doped P25, these codoped TiO2 nanotubes/nanorods possess a superior photocatalytic acticity, owing to the synergistic effects of the nitrogen and carbon co-doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H.X., Bian Z.F., Zhu J., Zhang D.Q., Li G.S., Huo Y.N., Li H., and Lu Y.F., Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, J. Am. Chem. Soc., 2007, 129: 8406.

    Article  CAS  Google Scholar 

  2. Zheng Z.K., Huang B.B., Qin X.Y., Zhang X.Y., Dai Y., Jiang M.H., Wang P., and Whangbo M.H., Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} facets, Chem. Eur. J. 2009, 15: 12576.

    Article  CAS  Google Scholar 

  3. Wang X.N., Huang B.B., Wang Z.Y., Qin X.Y., Zhang X.Y., Dai Y., and Whangbo M.H., Synthesis of anatase TiO2 tubular structures microcrystallites with a high percentage of {001} facets by a simple one-step hydrothermal template process, Chem. Eur. J., 2010 16: 7106.

    CAS  Google Scholar 

  4. Lan Y., Gao X.P., Zhu H.Y., Zheng Z.F., Yan T.Y., Wu F., Ringer S.P., and Song D.Y., Titanate nanotubes and nanorods prepared from rutile powder, Adv. Funct. Mater., 2005, 15: 1310.

    Article  CAS  Google Scholar 

  5. Kobayashi S., Hanabusa K., Hamasaki N., Kimura M., and Shirai H., Preparation of TiO2 hollow-fibers using supramolecular assemblies, Chem. Mater. 2000, 12: 1523.

    Article  CAS  Google Scholar 

  6. Nelson K., and Deng Y.L., Enhanced light scattering from hollow polycrystalline TiO2 particles in a cellulose matrix, Langmuir, 2008, 24: 975.

    Article  CAS  Google Scholar 

  7. Dvoranová D, Brezová V, Mazúr M, and Malati M.A., Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B, 2002, 37: 91.

    Article  Google Scholar 

  8. Litter M.I., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Appl. Catal. B: Environ, 1999, 23: 89.

    Article  CAS  Google Scholar 

  9. Herrmann J.-M., Tahiri H., Guillar C., and Pichat P., Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water, Catal. Today, 1999, 54: 131.

    Article  CAS  Google Scholar 

  10. Asahi R., Ohkawa T., Aoki K., and Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 293: 269.

    Article  CAS  Google Scholar 

  11. Yamaki T., Sumita T., and Yamamoto S., Formation of TiO2-xFx compounds in fluorine-implanted TiO2, J. Mater. Sci. Lett., 2002, 21: 33.

    Article  CAS  Google Scholar 

  12. Zhao W., Ma W.H., Chen C.C., Zhao J.C., and Shuai Z.G., Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−x Bx under Visible Irradiation, J. Am. Chem. Soc., 2004, 126: 4782.

    Article  CAS  Google Scholar 

  13. Irie H., Watanabe Y., and Hashimoto K., Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst, Chem. Lett., 2003, 32: 772.

    Article  CAS  Google Scholar 

  14. Xie Y., Li Y.Z., and Zhao X.J., Low-temperature preparation and visible-light-induced catalytic activity of anatase F-N-codoped TiO2, J Mol. Catal. A Chem., 2007, 277: 119.

    Article  CAS  Google Scholar 

  15. Chen D.M., Jiang Z.Y., Geng J.Q., Wang Q., and Yang D., Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Ind. Eng. Chem. Res., 2007, 46: 2741.

    Article  CAS  Google Scholar 

  16. Ohno T., Tsubota T., Toyofuku M., and Inaba R., Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light, Catal. Lett., 2004, 98: 255.

    Article  CAS  Google Scholar 

  17. Sakthivel S., and Kisch H., Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem., Int. Ed., 2003, 42: 4908.

    Article  CAS  Google Scholar 

  18. Diwald O., Thompson T.L., Zubkov T., Goralski E.G., Walck S.D., and Yates J.T., Jr. Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light, J. Phys. Chem. B, 2004, 108: 6004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baibiao Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Huang, B., Wang, Z. et al. Synthesis and characterization of C, N-codoped TiO2 nanotubes/nanorods with visible-light activity. Rare Metals 30 (Suppl 1), 161–165 (2011). https://doi.org/10.1007/s12598-011-0261-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0261-1

Keywords

Navigation