Skip to main content
Log in

Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A new scheme of terahertz (THz) generation from laser filaments in plasma in the presence of static electric and magnetic fields is proposed. Two femtosecond laser pulses of different frequencies (\(\omega_{1} ,\omega_{2}\)) and wave numbers (\(k_{1} ,k_{2}\)) are co-propagating under the action of filamentation in a magnetized collisional plasma. THz wave is generated due to the nonlinear coupling between nonlinear velocity and electron density in magnetized collisional plasma. For suitable laser and plasma parameters, the nonlinear coupling results in enhanced nonlinear current density which leads to resonant THz waves. The external D.C. electric and magnetic fields are applied perpendicular to each other and mutually perpendicular to the direction of co-propagating lasers. We have obtained the expression of a dielectric tensor with anisotropic nature, and it is found very useful in the study of THz generation. The applied magnetic field also aids to enhance the transverse components of nonlinear current. This nonlinear current is responsible to generate enhanced terahertz waves at frequency (\(\omega_{1} - \omega_{2}\)). We have found that the normalized THz amplitude increases significantly with the increase in applied D.C. electric field from 10 to 30 kV/cm and magnetic field from 10 to 50kG. Our scheme with numerical analysis may open the door for efficient and cost-effective way to generate THz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.B. Hu, M.C. Nuss, Opt. Lett. 20, 1716 (1995)

    Article  ADS  Google Scholar 

  2. Baker C, Lo T, Tribe W.R, Cole B.E, Hogbin M.R and Kemp M.C Proceedings of the IEEE 2007 95 1559–1565.

  3. K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, S. Arai, Electron. Lett. 8, 582 (2012)

    Article  ADS  Google Scholar 

  4. A.R. Orlando, G.P. Gallerano, Springers 30, 1809–1818 (2009)

    Google Scholar 

  5. P.H. Siegel, IEEE Trans Microw Theory Tech 50, 910–928 (2002)

    Article  ADS  Google Scholar 

  6. D. Dragoman, M. Dragoman, Prog. Quantum. Electron. 28, 1–66 (2004)

    Article  ADS  Google Scholar 

  7. F. Sizov, Opto-Electrons Rev 18, 009–0029 (2010)

    ADS  Google Scholar 

  8. R.K. Singh, S. Kumar, R.P. Sharma, Contrib. Plasma Phys. 57, 252–257 (2017)

    Article  ADS  Google Scholar 

  9. V. Thakur, N. Kant, S. Vij, Phys Scr 95, 045602 (2020)

    Article  ADS  Google Scholar 

  10. M. Kumar, V.K. Tripathi, IEEE J Quantum Elect. 48, 1031–1035 (2012)

    Article  ADS  Google Scholar 

  11. A.B. Langdon, B.F. Lasinski, Phys. Rev. Lett. 34, 934 (1975)

    Article  ADS  Google Scholar 

  12. T.J. Wang, J.F. Daigle, S. Yuan, F. Théberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, S.L. Chin, Phys. Rev. A 83, 053801 (2011)

    Article  ADS  Google Scholar 

  13. P. Varshney, V. Sajal, P. Chauhan, R. Kumar, K.N. Sharma, Laser Part. Beams. 32, 375–381 (2014)

    Article  ADS  Google Scholar 

  14. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Opt Lett. 20(73), 75 (1995)

    ADS  Google Scholar 

  15. A. Houard, Y. Liu, B. Prade, V.T. Tikhonchuk, A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008)

    Article  ADS  Google Scholar 

  16. T. Löffler, F. Jacob, H.G. Roskos, Appl. Phys. Lett. 77, 453 (2000)

    Article  ADS  Google Scholar 

  17. L. Bhasin, V.K. Tripathi, Phys. Plasmas 18, 123106 (2011)

    Article  ADS  Google Scholar 

  18. R. McLaughlin, A. Corchia, M.B. Johnston, Q. Chen, C.M. Ciesla, D.D. Arnone, G.A.C. Jones, E.H. Linfield, A.G. Davies, M. Pepper, Appl. Phys. Lett. 76, 2038 (2000)

    Article  ADS  Google Scholar 

  19. L. Yu-Tong, W. Wei-Min, L. Chun, S. Zheng-Ming, Chin. Phys. B 21, 095203 (2012)

    Article  ADS  Google Scholar 

  20. A. Mehta, J. Rajput, N. Kant, Laser Phys. 29, 095405 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Vij, S., Kant, N. et al. Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma. Eur. Phys. J. Plus 136, 148 (2021). https://doi.org/10.1140/epjp/s13360-021-01089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01089-5

Navigation