Skip to main content
Log in

Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species, biological control and climate change are driving demand for tools to estimate species’ potential ranges in new environments. Flawed results from some tools are being used to inform policy and management in these fields. Independent validation of models is urgently needed so we compare the performance of the ubiquitous, logistic regression and the CLIMEX model in predicting recent range extensions of the livestock tick, Rhipicephalus (Boophilus) microplus, in Africa. Both models have been applied to the tick so new, independent data can be used to test their ability to model non-equilibrium distributions. Logistical regression described the spatial data well but failed to predict the range extensions. CLIMEX correctly predicted the extensions without fitting the non-equilibrium data accurately. Our results question the validity of using descriptive, statistical models to predict changes in species ranges with translocation and climate change. More test cases that include independent validation are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RP, Lew D (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Modell 162:211–232

    Article  Google Scholar 

  • Austin MP, Meyers JA (1996) Current approaches to modelling the environment niche of eucalypts: implication for management of forest biodiversity. For Ecol Manag 85:95–106

    Article  Google Scholar 

  • Beaumont LJ, Hughes L (2002) Potential changes in the distribution of latitudenally restricted Australian butterfly species in response to climate change. Glob Chang Biol 8:954–971

    Article  Google Scholar 

  • Bruce D, Wilson A (1998) The extensive spread of heartwater in Zimbabwe since 1975. In: Coons L, Rothschild M (eds) The second international conference on tick-borne pathogens at the host-vector interface: a global perspective, August 28–September 1 1995, Kruger National Park, South Africa, S.I. The Conference, pp 105–112

  • Cumming GS (1999a) The evolutionary ecology of African ticks. Oxford University, Oxford

    Google Scholar 

  • Cumming GS (1999b) Host distributions do not limit the species ranges of most African ticks (Acari: Ixodida [Metastigmata]). Bull Entomol Res 89:303–327

    Article  Google Scholar 

  • Cumming GS (2000a) Using between-model comparisons to fine-tune linear models of species ranges. J Biogeogr 27:441–455

    Article  Google Scholar 

  • Cumming GS (2000b) Using habitat models to map diversity: Pan-African species richness of ticks (Acari: Ixodida). J Biogeogr 27:425–440

    Article  Google Scholar 

  • Cumming GS (2002) Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83:255–268

    Article  Google Scholar 

  • Elith J, Graham CH et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

    Article  Google Scholar 

  • Estrada-Pena A (2001) Climate warming and changes in habitat suitability for Boophilus microplus (Acari: Ixodidae) in Central America. J Parasitol 87(5):978–987

    PubMed  CAS  Google Scholar 

  • Estrada-Pena A, Corson M et al (2006) Changes in climate and habitat suitability for the cattle tick Boophilus microplus in its southern Neotropical distribution range. J Vector Ecol 31(1):158–167

    Article  PubMed  CAS  Google Scholar 

  • Guisan A, Thuiller W (2007) Predicting species distribution: offering more than simple habitat models (vol 8, pg 993, 2005). Ecol Lett 10(5):435

    Article  Google Scholar 

  • Hall M, Wall R (1995) Myiasis of humans and domestic animals. Adv Parasitol 35:257–334

    Article  PubMed  CAS  Google Scholar 

  • Holt RD, Keitt TH (2005) Species’ borders: a unifying theme in ecology. Oikos 108(1):3–6

    Article  Google Scholar 

  • Hoogstraal H (1956) Ticks of the Sudan. US NAMRU No 3, Cairo

  • IPCC (2007) Climate change 2007: synthesis report. Cambridge University Press

  • Kriticos DJ, Randall PR (2001) A comparison of systems to analyse potential weed distributions. In: Groves RH, Panetta FD, Virtue JG (eds) Weed risk assessment. CSIRO, Melbourne, pp 61–79

    Google Scholar 

  • Lindsay SW, Parson L et al (1998) Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc R Soc Lond B 265:847–853

    Article  CAS  Google Scholar 

  • Lynen G, Zeman P et al (2008) Shifts in the distributional ranges of Boophilus ticks in Tanzania: evidence that a parapatric boundary between Boophilus microplus and B. decoloratus follows climate gradients. Exp Appl Acarol 44:147–164

    Article  PubMed  Google Scholar 

  • Madder M, Thys E et al (2007) Boophilus microplus ticks found in West Africa. Exp Appl Acarol 43:233–234

    Article  PubMed  Google Scholar 

  • Midgley GF, Hannah L et al (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr 11:445–451

    Article  Google Scholar 

  • Miller A (2002) Subset selection in regression. CRC Press (Chapman & Hall), London

    Google Scholar 

  • Minjauw B, Robinson T et al (2001) Map of Anaplasmosis and Babesiosis in sub-Saharan Africa. ILRI, Nairobi

    Google Scholar 

  • Mooney HA, Hobbs RJ (2000) Invasive species in a changing world. Island Press, Corelo

    Google Scholar 

  • New M, Lister D et al (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Pearson RG, Dawson TP et al (2002) SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol Modell 154:289–300

    Article  Google Scholar 

  • Robertson MP, Peter CI et al (2003) Comparing models for predicting species’ potential distributions: a case study using correlative and mechanistic predictive modelling techniques. Ecol Modell 16:153–167

    Article  Google Scholar 

  • Robinson TP, Rogers DJ et al (1997) Mapping tsetse habitat suitability in the common fly belt of southern Africa using multivariate analysis of climate and remotely sensed vegetation data. Med Vet Entomol 11:235–245

    Article  PubMed  CAS  Google Scholar 

  • Rogers DJ (1995) Remote sensing and the changing distribution of tsetse flies in Africa. In: Harrington R, Stork NE (eds) Insects in a changing environment. Academic Press, London, pp 177–193

    Google Scholar 

  • Rogers DJ, Packer MJ (1993) Vector-borne diseases, models, and global change. Lancet 342:1282–1284

    Article  PubMed  CAS  Google Scholar 

  • Rogers KJ, Randolph SE (1993) Distribution of tsetse and ticks in Africa: past, present and future. Parasitol Today 9(7):266–271

    Article  PubMed  CAS  Google Scholar 

  • Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Rogers DJ, Hay SI et al (1996) Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann Trop Med Parasitol 90(3):225–241

    PubMed  CAS  Google Scholar 

  • Sutherst RW (1987a) The dynamics of hybrid zones between tick (Acari) species. Int J Parasitol 17:921–926

    Article  PubMed  CAS  Google Scholar 

  • Sutherst RW (1987b) The role of models in tick control. In: Hughes KL (ed) Proceedings of the international conference on veterinary preventive medicine and animal production. Australian Veterinary Association, Melbourne, pp 32–37

    Google Scholar 

  • Sutherst RW (1998) Implications of global change and climate variability for vector-borne diseases: generic approaches to impact assessments. Int J Parasitol 28:935–945

    Article  PubMed  CAS  Google Scholar 

  • Sutherst RW (2003) Prediction of species geographical ranges. Guest editorial. J Biogeogr 30:1–12

    Article  Google Scholar 

  • Sutherst RW (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17(1):136–173

    Article  PubMed  Google Scholar 

  • Sutherst RW, Maywald GF (1985) A computerised system for matching climates in ecology. Agric Ecosyst Environ 13(3–4):281–300

    Article  Google Scholar 

  • Sutherst RW, Maywald G (2005) A climate-model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environ Entomol 34:317–335

    Article  Google Scholar 

  • Sutherst RW, Maywald GF et al (1995) Predicting insect distributions in a changing climate. In: Harrington R, Stork NE (eds) Insects in a changing environment. Academic Press, London, pp 59–91

    Google Scholar 

  • Sutherst RW, Maywald GF et al (2007) Including species-interactions in risk assessments for global change. Glob Chang Biol 13(9):1843–1859

    Article  Google Scholar 

  • Theiler G (1943) “Notes on the ticks off domestic stock from Portuguese East Africa.” Estação anti-malárica de Lourenço Marques: 1–55

  • Theiler G (1949) Zoological survey of the union of South Africa. Tick survey: part II. Distribution of Boophilus (Palpoboophilus) decoloratus, the blue tick. Onderstepoort J Vet Sci Anim Ind 22:255–268

    Google Scholar 

  • Thomas D, Cameron A et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W (2003) Biomod-optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9(10):1353–1362

    Article  Google Scholar 

  • Tønnesen MH, Penzhorn BL et al (2004) Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg Region, Limpopo Province, South Africa. Exp Appl Acarol 32:199–208

    Article  PubMed  Google Scholar 

  • Wharton RH (1974) The current status and prospects for the control of ixodid ticks with special emphasis on Boophilus microplus. Bulletin de l’Office International des Epizooties 81:65–85

    Google Scholar 

  • Zeman P, Lynen G (2006) Evaluation of four modelling techniques to predict the potential distribution of ticks using indigenous cattle infestations as calibration data. Exp Appl Acarol 39:163–176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Warwick Bottomley assisted with operation of Arcview and Dr. Graeme Cumming provided access to his database of tick distribution records and granted permission to reproduce two of his maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Sutherst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutherst, R.W., Bourne, A.S. Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11, 1231–1237 (2009). https://doi.org/10.1007/s10530-008-9335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9335-x

Keywords

Navigation