Skip to main content
Log in

Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Lead ions (Pb2+) possess characteristics similar to Ca2+. Because of this and its redox capabilities, lead causes different toxic effects. The neurotoxic effects have been well documented; however, the toxic effects on cardiac tissues remain allusive. We utilized isolated guinea pig hearts and measured the effects of Pb2+ on their contractility and excitability. Acute exposure to extracellular Pb2+ had a negative inotropic effect and increased diastolic tension. The speed of contraction and relaxation were affected, though the effects were more dramatic on the speed of contraction. Excitability was also altered. Heart beat frequency increased and later diminished after lead ion exposure. Pro-arrhytmic events, such as early after-depolarization and a reduction of the action potential plateau, were also observed. In isolated cardiomyocytes and tsA 201 cells, extracellular lead blocked currents through Cav1.2 channels, diminished their activation, and enhanced their fast inactivation, negatively affecting their gating currents. Thus, Pb2+ was cardiotoxic and reduced cardiac contractility, making the heart prone to arrhythmias. This was due, in part, to Pb2+ effects on the Cav1.2 channels; however, other channels, transporters or pathways may also be involved. Acute cardiotoxic effects were observed at Pb2+ concentrations achievable during acute lead poisoning. The results suggest how Cav1.2 gating can be affected by divalent cations, such as Pb2, and also suggest a more thorough evaluation of heart function in individuals affected by lead poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amado EM, Freire CA, Grassi MT, Souza MM (2012) Lead hampers gill cell volume regulation in marine crabs: stronger effect in a weak osmoregulator than in an osmoconformer. Aquat Toxicol 106-107:95–103. doi:10.1016/j.aquatox.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Maayah ZH, Bakheet SA, El-Kadi AO, Korashy HM (2013) The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model. Toxicology 306:40–49. doi:10.1016/j.tox.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  • Armant DR (2015) Intracellular Ca2+ signaling and preimplantation development. Adv Exp Med Biol 843:151–171. doi:10.1007/978-1-4939-2480-6_6

    Article  CAS  PubMed  Google Scholar 

  • Atchison WD (2003) Effects of toxic environmental contaminants on voltage-gated calcium channel function: from past to present. J Bioenerg Biomembr 35:507–532

    CAS  PubMed  Google Scholar 

  • Audesirk G (1993) Electrophysiology of lead intoxication: effects on voltage-sensitive ion channels. Neurotoxicology 14:137–147

    CAS  PubMed  Google Scholar 

  • Babich O, Isaev D, Shirokov R (2005) Role of extracellular Ca2+ in gating of CaV1.2 channels. J Physiol 565:709–715. doi:10.1113/jphysiol.2005.086561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babich O, Matveev V, Harris AL, Shirokov R (2007) Ca2+−dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels? J Gen Physiol 129:477–483. doi:10.1085/jgp.200709734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranowska-Bosiacka I, Gutowska I, Rybicka M, Nowacki P, Chlubek D (2012) Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders. Neurol Neurochir Pol 46:569–578

    CAS  PubMed  Google Scholar 

  • Baranowska-Bosiacka I et al (2016) Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia. Toxicology 339:19–33. doi:10.1016/j.tox.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  • Bartolommei G, Gramigni E, Tadini-Buoninsegni F, Santini G, Moncelli MR (2010) Confining the sodium pump in a phosphoenzyme form: the effect of lead(II) ions. Biophys J 99:2087–2096. doi:10.1016/j.bpj.2010.07.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basha DC, Basha SS, Reddy GR (2012) Lead-induced cardiac and hematological alterations in aging Wistar male rats: alleviating effects of nutrient metal mixture. Biogerontology 13:359–368. doi:10.1007/s10522-012-9380-9

    Article  CAS  PubMed  Google Scholar 

  • Bellinger D, Leviton A, Waternaux C, Needleman H, Rabinowitz M (1987) Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. N Engl J Med 316:1037–1043

    CAS  PubMed  Google Scholar 

  • Bernal J, Lee JH, Cribbs LL, Perez-Reyes E (1997) Full reversal of Pb++ block of L-type ca++ channels requires treatment with heavy metal antidotes. J Pharmacol Exp Ther 282:172–180

    CAS  PubMed  Google Scholar 

  • Bhatnagar A (2006) Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ Res 99:692–705. doi:10.1161/01.RES.0000243586.99701.cf

    Article  CAS  PubMed  Google Scholar 

  • Braga MF, Pereira EF, Mike A, Albuquerque EX (2004) Pb2+ via protein kinase C inhibits nicotinic cholinergic modulation of synaptic transmission in the hippocampus. J Pharmacol Exp Ther 311:700–710. doi:10.1124/jpet.104.070466

    Article  CAS  PubMed  Google Scholar 

  • Bressler J, K-a K, Chakraborti T, Goldstein G (1999) Molecular mechanisms of lead neurotoxicity. Neurochem Res 24:595–600

    CAS  PubMed  Google Scholar 

  • Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci 1012:142–152

    CAS  PubMed  Google Scholar 

  • Busselberg D (1995) Calcium channels as target sites of heavy metals. Toxicol Lett 82-83:255–261

    CAS  PubMed  Google Scholar 

  • Busselberg D, Michael D, Platt B (1994a) Pb2+ reduces voltage- and N-methyl-D-aspartate (NMDA)-activated calcium channel currents. Cell Mol Neurobiol 14:711–722

    CAS  PubMed  Google Scholar 

  • Busselberg D, Platt B, Michael D, Carpenter DO, Haas HL (1994b) Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+, and Al3+. J Neurophysiol 71:1491–1497

    CAS  PubMed  Google Scholar 

  • Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. N Engl J Med 348:1517–1526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casas JS, Sordo J (2011) Lead: chemistry, analytical aspects. Environmental Impact and health effects. Elsevier , Amsterdam

  • Chandran L, Cataldo R (2010) Lead poisoning: basics and new developments. Pediatr Rev 31:399–405

    PubMed  Google Scholar 

  • Chen HH, Chan MH (2002) Developmental lead exposure differentially alters the susceptibility to chemoconvulsants in rats. Toxicology 173:249–257

    CAS  PubMed  Google Scholar 

  • Chen ZZ, Zhu L, Yao K, Wang XJ, Ding JN (2009) [Interaction between calcium and lead affects the toxicity to embryo of zebrafish (Danio rerio)] Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui] 30:1205-1209

  • Cheong JH, Bannon D, Olivi L, Kim Y, Bressler J (2004) Different mechanisms mediate uptake of lead in a rat astroglial cell line. Toxicol sci 77:334–340. doi:10.1093/toxsci/kfh024

    Article  PubMed  Google Scholar 

  • Chiu TY, Teng HC, Huang PC, Kao FJ, Yang DM (2009) Dominant role of Orai1 with STIM1 on the cytosolic entry and cytotoxicity of lead ions. Toxicol Sci 110:353–362. doi:10.1093/toxsci/kfp099

    Article  CAS  PubMed  Google Scholar 

  • Cory-Slechta DA, Garcia-Osuna M, Greenamyre JT (1997) Lead-induced changes in NMDA receptor complex binding: correlations with learning accuracy and with sensitivity to learning impairments caused by MK-801 and NMDA administration. Behav Brain Res 85:161–174

    CAS  PubMed  Google Scholar 

  • Costa C, Torres H, Hartmann H, Dutra J, Ferreira G (2014) Chemical cardiomyopathies: functional consequences of the application of chloroquine to guinea-pig isolated hearts. AnFaMed 1:65–79

    Google Scholar 

  • Dabyntseva RD, Ulianenko TV, Borisevich AN, Filonenko LP, Chuiko AL, Lozinskii MO, Kosterin SA (1995) Combined effect of Pb2+ and divalent mental complexes on superprecipation and ATPase activity of myometrial actomyosin. Ukr Biokhim Zh 67(1978):46–52

    CAS  PubMed  Google Scholar 

  • Dibb KM, Graham HK, Venetucci LA, Eisner DA, Trafford AW (2007) Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. Cell Calcium 42:503–512. doi:10.1016/j.ceca.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  • Dietz K-J, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy metal stress in plants. Springer, Berlin, pp 73–97

    Google Scholar 

  • Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME (2000) Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2:173–177. doi:10.1038/35004052

    Article  CAS  PubMed  Google Scholar 

  • Ferreira G (1992) Registro y caracterizacion del movimiento de carga intramembrana en miocitos aislados de miocardio ventricular de cobayo. MSc Thesis PEDECIBA, Universidad de la República

  • Ferreira G, Artigas P, Pizarro G, Brum G (1997a) Butanedione monoxime promotes voltage-dependent inactivation of L-type calcium channels in heart effects on gating currents. J Mol Cell Cardiol 29:777–787

    CAS  PubMed  Google Scholar 

  • Ferreira G, Yi J, Ríos E, Shirokov R (1997b) Ion-dependent inactivation of barium current through L-type calcium channels. J Gen Physiol 109:449–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira G, Takeshima H, Rios E, Gonzalez A 1998. High intracellular calcium affects L-type calcium channel gating. Biophys J 74:A101

  • Ferreira G, Yi J, Ríos E 1999.Fast and slow mechanisms of voltage dependent inactivation of cardiac L-type Ca2+ channels. Biophys J 76:A340

  • Ferreira G, Reyes N, Pizarro G, Brum G, Rios E 2001. Correlation between surfaces of inactivation of ionic currents and charge availability in L-type Ca2+ channels. Biophys J 80:620A

  • Ferreira G, Rios E, Reyes N (2003) Two components of voltage-dependent inactivation in ca(v)1.2 channels revealed by its gating currents. Biophys J 84:3662–3678. doi:10.1016/S0006-3495(03)75096-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findeisen F, Minor DL Jr (2010) Structural basis for the differential effects of CaBP1 and calmodulin on ca(V)1.2 calcium-dependent inactivation. Structure (London, England : 1993) 18:1617–1631. doi:10.1016/j.str.2010.09.012

    Article  CAS  Google Scholar 

  • Fioresi M, Simoes MR, Furieri LB, Broseghini-Filho GB, Vescovi MV, Stefanon I, Vassallo DV (2014) Chronic lead exposure increases blood pressure and myocardial contractility in rats. PLoS ONE 9:e96900. doi:10.1371/journal.pone.0096900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox DA, Rubinstein SD, Hsu P (1991) Developmental lead exposure inhibits adult rat retinal, but not kidney, Na+,K(+)-ATPase. Toxicol Appl Pharmacol 109:482–493

    CAS  PubMed  Google Scholar 

  • Fu X, Zeng A, Zheng W, Du Y (2014) Upregulation of zinc transporter 2 in the blood-CSF barrier following lead exposure. Exp Biol Med (Maywood, NJ) 239:202–212. doi:10.1177/1535370213509213

    Article  CAS  Google Scholar 

  • Garza A, Vega R, Soto E (2006) Cellular mechanisms of lead neurotoxicity. Med Sci Monit 12:RA57–RA65

    PubMed  Google Scholar 

  • Gavazzo P, Gazzoli A, Mazzolini M, Marchetti C (2001) Lead inhibition of NMDA channels in native and recombinant receptors. Neuroreport 12:3121–3125

    CAS  PubMed  Google Scholar 

  • Gedeon Y, Ramesh GT, Wellman PJ, Jadhav AL (2001) Changes in mesocorticolimbic dopamine and D1/D2 receptor levels after low level lead exposure: a time course study. Toxicol Lett 123:217–226

    CAS  PubMed  Google Scholar 

  • Gidlow DA (2015) Lead toxicity. Occup Med (Oxford, England) 65:348–356. doi:10.1093/occmed/kqv018

    Article  CAS  Google Scholar 

  • Goasdoue K, Miller SM, Colditz PB, Bjorkman ST (2016) Review: the blood-brain barrier; protecting the developing fetal brain. Placenta. doi:10.1016/j.placenta.2016.12.005

  • Goering PL (1993) Lead-protein interactions as a basis for lead toxicity. Neurotoxicology 14:45–60

    CAS  PubMed  Google Scholar 

  • Gorkhali R, Huang K, Kirberger M, Yang JJ (2016) Defining potential roles of Pb(2+) in neurotoxicity from a calciomics approach. Metallomics 8:563–578. doi:10.1039/c6mt00038j

    Article  PubMed  PubMed Central  Google Scholar 

  • Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-ATPase, functions as a cd/Pb transporter in yeas. FEBS Lett 561:22–28. doi:10.1016/s0014-5793(04)00072-9

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Wang L, Xiao C, Guo F, Ruan DY (2005) Effects of lead on voltage-gated sodium channels in rat hippocampal CA1 neurons. Neuroscience 133:679–690. doi:10.1016/j.neuroscience.2005.02.039

    Article  CAS  PubMed  Google Scholar 

  • Guilarte TR (1997) Pb2+ inhibits NMDA receptor function at high and low affinity sites: developmental and regional brain expression. Neurotoxicology 18:43–51

    CAS  PubMed  Google Scholar 

  • Habermann E, Crowell K, Janicki P (1983) Lead and other metals can substitute for Ca2+ in calmodulin. Arch Toxicol 54:61–70

    CAS  PubMed  Google Scholar 

  • Halling DB, Aracena-Parks P, Hamilton SL (2005) Regulation of voltage-gated Ca2+ channels by calmodulin. Sci STKE 2005:re15 doi:10.1126/stke.3152005re15

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv 391:85–100

    CAS  PubMed  Google Scholar 

  • Haynes WM (2016) CRC handbook of chemistry and physics, 97th edn. CRCress, Boca Raton

  • Heavner JE (2002) Cardiac toxicity of local anesthetics in the intact isolated heart model: a review. Reg Anesth Pain Med 27:545–555

    CAS  PubMed  Google Scholar 

  • Hering S, Berjukow S, Sokolov S, Marksteiner R, Weiss RG, Kraus R, Timin EN (2000) Molecular determinants of inactivation in voltage-gated Ca2+ channels. J Physiol 528(Pt 2):237–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess P, Lansman JB, Tsien RW (1986) Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 88:293–319

    CAS  PubMed  Google Scholar 

  • Housecroft CE, Sharpe AG (2012) Inorganic chemistry. Pearson, Harlow

  • Jang HO et al (2008) The effect of lead on calcium release activated calcium influx in primary cultures of human osteoblast-like cells. Arch Pharm Res 31:188–194

    CAS  PubMed  Google Scholar 

  • Jochim K, Katz LN, Mayne W (1935) The monophasic electrogram obtained from the mammalian heart. Am J Physiol-Legacy Content 111:177–186

    Google Scholar 

  • Karri V, Schuhmacher M, Kumar V (2016) Heavy metals (Pb, cd, as and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol 48:203–213. doi:10.1016/j.etap.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  • Kern M, Audesirk G (2000) Stimulatory and inhibitory effects of inorganic lead on calcineurin. Toxicology 150:171–178

    CAS  PubMed  Google Scholar 

  • Kern M, Wisniewski M, Cabell L, Audesirk G (2000) Inorganic lead and calcium interact positively in activation of calmodulin. Neurotoxicology 21:353–363

    CAS  PubMed  Google Scholar 

  • Kirberger M, Yang JJ (2008) Structural differences between Pb 2+−and ca 2+−binding sites in proteins: implications with respect to toxicity. J Inorg Biochem 102:1901–1909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirberger M, Wong HC, Jiang J, Yang JJ (2013) Metal toxicity and opportunistic binding of Pb(2+) in proteins. J Inorg Biochem 125:40–49. doi:10.1016/j.jinorgbio.2013.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobrinsky E et al (2004) Voltage-gated rearrangements associated with differential beta-subunit modulation of the L-type ca(2+) channel inactivation. Biophys J 87:844–857. doi:10.1529/biophysj.104.041152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp SJ, Perry M Jr, Glonek T, Erlanger M, Perry EF, Barany M, D'Agrosa LS (1980) Cardiac physiologic-metabolic changes after chronic low-level heavy metal feeding. Am J Phys 239:H22–H30

    CAS  Google Scholar 

  • Kurppa K, Hietanen E, Klockars M, Partinen M, Rantanen J, Ronnemaa T, Viikari J (1984) Chemical exposures at work and cardiovascular morbidity. Atherosclerosis, ischemic heart disease, hypertension, cardiomyopathy and arrhythmias. Scand J Work Environ Health 10:381–388

    CAS  PubMed  Google Scholar 

  • Kursula P, Majava V (2007) A structural insight into lead neurotoxicity and calmodulin activation by heavy metals. Acta Crystallogr Sect F: Struct Biol Cryst Commun 63:653–656. doi:10.1107/S1744309107034525

    Article  CAS  Google Scholar 

  • Labyntseva RD, Ul'ianenko TV, Kosterin SA (1998) Effect of heavy metal ions on superprecipitation and ATPase activity of uterine smooth muscle actomyosin activity. Ukr Biokhim Zh 70(1978):71–77

    CAS  PubMed  Google Scholar 

  • Lansman JB, Hess P, Tsien RW (1986) Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 88:321–347

    CAS  PubMed  Google Scholar 

  • Legare ME, Barhoumi R, Hebert E, Bratton GR, Burghardt RC, Tiffany-Castiglioni E (1998) Analysis of Pb2+ entry into cultured astroglia. Toxicol Sci 46:90–100. doi:10.1006/toxs.1998.2492

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2010) A single amino acid change in ca(v)1.2 channels eliminates the permeation and gating differences between ca(2+) and Ba(2+). J Membr Biol 233:23–33. doi:10.1007/s00232-009-9221-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT (2003) Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39:951–960

    CAS  PubMed  Google Scholar 

  • Liang GH, Jarlebark L, Ulfendahl M, Bian JT, Moore EJ (2004) Lead (Pb2+) modulation of potassium currents of guinea pig outer hair cells. Neurotoxicol Teratol 26:253–260. doi:10.1016/j.ntt.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  • Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126:5–19

    PubMed  Google Scholar 

  • Liu T, Reyes-Caballero H, Li C, Scott RA, Giedroc DP (2007) Multiple metal binding domains enhance the Zn(II) selectivity of the divalent metal ion transporter AztA. Biochemistry 46:11057–11068. doi:10.1021/bi7006367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes AC, Peixe TS, Mesas AE, Paoliello MM (2016) Lead exposure and oxidative stress: a systematic review. Rev Environ Contam Toxicol 236:193–238. doi:10.1007/978-3-319-20013-2_3

    Article  CAS  PubMed  Google Scholar 

  • Madeja M, Binding N, Musshoff U, Pongs O, Witting U, Speckmann EJ (1995) Effects of lead on cloned voltage-operated neuronal potassium channels. Naunyn Schmiedeberg's Arch Pharmacol 351:320–327

    CAS  Google Scholar 

  • Madeja M, Musshoff U, Binding N, Witting U, Speckmann EJ (1997) Effects of Pb2+ on delayed-rectifier potassium channels in acutely isolated hippocampal neurons. J Neurophysiol 78:2649–2654

    CAS  PubMed  Google Scholar 

  • Madhusudhanan M, Lall S (2007) Acute lead poisoning in an infant. Oman Med J22:57–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti C (2013) Role of calcium channels in heavy metal toxicity. ISRN Toxicol 2013:184360. doi:10.1155/2013/184360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti C (2014) Interaction of metal ions with neurotransmitter receptors and potential role in neurodiseases. Biometals 27:1097–1113. doi:10.1007/s10534-014-9791-y

    Article  CAS  PubMed  Google Scholar 

  • Martell AE, Smith RM (1974) Critical stability constants vol 1. Springer

  • Minor DL Jr, Findeisen F (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin, Tex) 4:459–474. doi:10.4161/chan.4.6.12867

    Article  CAS  Google Scholar 

  • Missiaen L et al (2000) Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 28:1–21. doi:10.1054/ceca.2000.0131

    Article  CAS  PubMed  Google Scholar 

  • Mitra R, Morad M (1985) A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Phys 249:H1056–H1060

    CAS  Google Scholar 

  • Neal AP, Guilarte TR (2010) Molecular neurobiology of lead (Pb(2+)): effects on synaptic function. Mol Neurobiol 42:151–160. doi:10.1007/s12035-010-8146-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumaier F, Dibue-Adjei M, Hescheler J, Schneider T (2015) Voltage-gated calcium channels: determinants of channel function and modulation by inorganic cations. Prog Neurobiol 129:1–36. doi:10.1016/j.pneurobio.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  • Neyton J, Pelleschi M (1991) Multi-ion occupancy alters gating in high-conductance, ca(2+)-activated K+ channels. J Gen Physiol 97:641–665

    CAS  PubMed  Google Scholar 

  • Nieboer E, Richardson DH (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1:3–26

    CAS  Google Scholar 

  • Oortgiesen M, van Kleef RG, Bajnath RB, Vijverberg HP (1990) Nanomolar concentrations of lead selectively block neuronal nicotinic acetylcholine responses in mouse neuroblastoma cells. Toxicol Appl Pharmacol 103:165–174

    CAS  PubMed  Google Scholar 

  • Oortgiesen M, Leinders T, van Kleef RG, Vijverberg HP (1993) Differential neurotoxicological effects of lead on voltage-dependent and receptor-operated ion channels. Neurotoxicology 14:87–96

    CAS  PubMed  Google Scholar 

  • Organization WH (2016) Lead Poisoning and Health WHO FactSheet http://www.who.int/mediacentre/factsheets/fs379/en/

  • Orio P, Rojas P, Ferreira G, Latorre R (2002) New disguises for an old channel: MaxiK channel β-subunits. Physiology 17:156–161

    CAS  Google Scholar 

  • Ouyang H, Vogel HJ (1998) Metal ion binding to calmodulin: NMR and fluorescence studies. Biometals: Int J Role Metal Ions Biol, Biochem Med 11:213–222

    CAS  Google Scholar 

  • Patrick L (2006a) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11:114

    PubMed  Google Scholar 

  • Patrick L (2006b) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev 11:2–22

    PubMed  Google Scholar 

  • Pearce JM (2007) Burton's line in lead poisoning. Eur Neurol 57:118–119. doi:10.1159/000098100

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Hajela RK, Atchison WD (2002) Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells. Mol Pharmacol 62:1418–1430

    CAS  PubMed  Google Scholar 

  • Peterson BZ, DeMaria CD, Adelman JP, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+ −dependent inactivation of L-type calcium channels. Neuron 22:549–558

    CAS  PubMed  Google Scholar 

  • Poomvanicha M, Wegener JW, Blaich A, Fischer S, Domes K, Moosmang S, Hofmann F (2011) Facilitation and Ca2+−dependent inactivation are modified by mutation of the ca(v)1.2 channel IQ motif. J Biol Chem 286:26702–26707. doi:10.1074/jbc.M111.247841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pounds JG (1984) Effect of lead intoxication on calcium homeostasis and calcium-mediated cell function: a review. Neurotoxicology 5:295–331

    CAS  PubMed  Google Scholar 

  • Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP (1994) Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature 368:67–70. doi:10.1038/368067a0

    Article  CAS  PubMed  Google Scholar 

  • Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD (2008) The vascular system as a target of metal toxicity. Toxicol Sci 102:207–218. doi:10.1093/toxsci/kfm263

    Article  CAS  PubMed  Google Scholar 

  • Przedpelska-Wasowicz EM, Wierzbicka M (2011) Gating of aquaporins by heavy metals in Allium Cepa L. epidermal cells. Protoplasma 248:663–671. doi:10.1007/s00709-010-0222-9

    Article  CAS  PubMed  Google Scholar 

  • Qin N, Olcese R, Bransby M, Lin T, Birnbaumer L (1999) Ca2+−induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci U S A 96:2435–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen JF, Pounds JG (1989) Quantitative interactions between Pb2+ and Ca2+ homeostasis in cultured osteoclastic bone cells. Toxicol Appl Pharmacol 98:530–543

    CAS  PubMed  Google Scholar 

  • Rosin A (2009) The long-term consequences of exposure to lead. Isr Med Assoc J 11:689–694

    PubMed  Google Scholar 

  • Sakmann B, Neher E (2009) Single-channel Recording. Springer, Berlin

    Google Scholar 

  • Sandhir R, Gill KD (1994) Alterations in calcium homeostasis on lead exposure in rat synaptosomes. Mol Cell Biochem 131:25–33

    CAS  PubMed  Google Scholar 

  • Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159. doi:10.1146/annurev.physiol.65.092101.142345

    Article  CAS  PubMed  Google Scholar 

  • Schwerdtfeger P (2002) Relativistic electronic structure theory - fundamentals. Elsevier, Amsterdam

  • Scoote M, Williams AJ (2004) Myocardial calcium signalling and arrhythmia pathogenesis. Biochem Biophys Res Commun 322:1286–1309. doi:10.1016/j.bbrc.2004.08.034

    Article  CAS  PubMed  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Google Scholar 

  • Shirokov R, Levis R, Shirokova N, Rios E (1992) Two classes of gating current from L-type ca channels in guinea pig ventricular myocytes. J Gen Physiol 99:863–895

    CAS  PubMed  Google Scholar 

  • Sillen LG, Martell AE, Bjerrum J (1964) Stability constants of metal-ion complexes, vol 17. Chemical Society, London

    Google Scholar 

  • Silva MA, de Oliveira TF, Almenara CC, Broseghini-Filho GB, Vassallo DV, Padilha AS, Silveira EA (2015) Exposure to a low lead concentration impairs contractile machinery in rat cardiac muscle. Biol Trace Elem Res 167:280–287. doi:10.1007/s12011-015-0300-0

    Article  CAS  PubMed  Google Scholar 

  • Simoes MR et al (2011) Acute lead exposure increases arterial pressure: role of the renin-angiotensin system. PLoS ONE 6:e18730. doi:10.1371/journal.pone.0018730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons T (1986) Cellular interactions between lead and calcium. Br Med Bull 42:431–434

    CAS  PubMed  Google Scholar 

  • Simons T (1992) Lead-calcium interactions in cellular lead toxicity. Neurotoxicology 14:77–85

    Google Scholar 

  • Simons TJ (1993) Lead-calcium interactions in cellular lead toxicity. Neurotoxicology 14:77–85

    CAS  PubMed  Google Scholar 

  • Simons TJ, Pocock G (1987) Lead enters bovine adrenal medullary cells through calcium channels. J Neurochem 48:383–389

    CAS  PubMed  Google Scholar 

  • Sousa CA, Hanselaer S, Soares EV (2015) ABCC subfamily vacuolar transporters are involved in Pb (lead) detoxification in Saccharomyces Cerevisiae. Appl Biochem Biotechnol 175:65–74. doi:10.1007/s12010-014-1252-0

    Article  CAS  PubMed  Google Scholar 

  • Stansfield KH, Ruby KN, Soares BD, McGlothan JL, Liu X, Guilarte TR (2015) Early-life lead exposure recapitulates the selective loss of parvalbumin-positive GABAergic interneurons and subcortical dopamine system hyperactivity present in schizophrenia. Transl Psychiatry 5:e522. doi:10.1038/tp.2014.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stotz SC, Zamponi GW (2001a) Identification of inactivation determinants in the domain IIS6 region of high voltage-activated calcium channels. J Biol Chem 276:33001–33010. doi:10.1074/jbc.M104387200

    Article  CAS  PubMed  Google Scholar 

  • Stotz SC, Zamponi GW (2001b) Structural determinants of fast inactivation of high voltage-activated ca(2+) channels. Trends Neurosci 24:176–181

    CAS  PubMed  Google Scholar 

  • Stotz SC, Hamid J, Spaetgens RL, Jarvis SE, Zamponi GW (2000) Fast inactivation of voltage-dependent calcium channels. A hinged-lid mechanism? J Biol Chem 275:24575–24582. doi:10.1074/jbc.M000399200

    Article  CAS  PubMed  Google Scholar 

  • Stotz SC, Jarvis SE, Zamponi GW (2004) Functional roles of cytoplasmic loops and pore lining transmembrane helices in the voltage-dependent inactivation of HVA calcium channels. J Physiol 554:263–273. doi:10.1113/jphysiol.2003.047068

    Article  CAS  PubMed  Google Scholar 

  • Struzynska L (2009) A glutamatergic component of lead toxicity in adult brain: the role of astrocytic glutamate transporters. Neurochem Int 55:151–156. doi:10.1016/j.neuint.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  • Struzynska L, Chalimoniuk M, Sulkowski G (2005) The role of astroglia in Pb-exposed adult rat brain with respect to glutamate toxicity. Toxicology 212:185–194. doi:10.1016/j.tox.2005.04.013

    Article  CAS  PubMed  Google Scholar 

  • Sukumar P, Beech DJ (2010) Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb2+). Biochem Biophys Res Commun 393:50–54. doi:10.1016/j.bbrc.2010.01.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L et al (2014a) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61

    PubMed  Google Scholar 

  • Tang L et al (2014b) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61. doi:10.1038/nature12775

    Article  CAS  PubMed  Google Scholar 

  • Taylor AE (1996) Cardiovascular effects of environmental chemicals. Otolaryngol-Head Neck Surg 114:209–211

    CAS  PubMed  Google Scholar 

  • Tollestrup K, Daling JR, Allard J (1995) Mortality in a cohort of orchard workers exposed to lead arsenate pesticide spray. Arch Environ Health 50:221–229. doi:10.1080/00039896.1995.9940391

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Suszkiw JB (1991) Permeation of Pb2+ through calcium channels: fura-2 measurements of voltage- and dihydropyridine-sensitive Pb2+ entry in isolated bovine chromaffin cells. Biochim Biophys Acta 1069:197–200

    CAS  PubMed  Google Scholar 

  • Vijverberg HP, Leinders-Zufall T, van Kleef RG (1994a) Differential effects of heavy metal ions on ca(2+)-dependent K+ channels. Cell Mol Neurobiol 14:841–857

    CAS  PubMed  Google Scholar 

  • Vijverberg HP, Oortgiesen M, Leinders T, van Kleef RG (1994b) Metal interactions with voltage- and receptor-activated ion channels. Environ Health Perspect 102(Suppl 3):153–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vorvolakos T, Arseniou S, Samakouri M (2016) There is no safe threshold for lead exposure: alpha literature review. Psychiatrike 27:204–214

    PubMed  Google Scholar 

  • Wang H, Wang ZK, Jiao P, Zhou XP, Yang DB, Wang ZY, Wang L (2015) Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead. Toxicology 333:137–146. doi:10.1016/j.tox.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  • Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z (2010) Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm 7:1891–1899

    PubMed  PubMed Central  Google Scholar 

  • Westerink RH, Vijverberg HP (2002) Ca(2+) -independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb(2+). J Neurochem 80:861–873

    CAS  PubMed  Google Scholar 

  • White LD et al (2007) New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 225:1–27. doi:10.1016/j.taap.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  • Williams BJ, Hejtmancik MR Jr, Abreu M (1983) Cardiac effects of lead. Fed Proc 42:2989–2993

    CAS  PubMed  Google Scholar 

  • Wilson MA, Brunger AT (2003) Domain flexibility in the 1.75 a resolution structure of Pb2+−calmodulin. Acta Crystallogr D 59:1782–1792

    PubMed  Google Scholar 

  • Winder C, Lazareno S (1985) Effect of lead exposure on dopaminergic D2 receptor binding in the 21-day-old rat. Toxicol Lett 24:209–214

    CAS  PubMed  Google Scholar 

  • Wirbisky SE, Weber GJ, Lee JW, Cannon JR, Freeman JL (2014) Novel dose-dependent alterations in excitatory GABA during embryonic development associated with lead (Pb) neurotoxicity. Toxicol Lett 229:1–8. doi:10.1016/j.toxlet.2014.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Gu Y, Zhou CY, Wang L, Zhang MM, Ruan DY (2006) Pb2+ impairs GABAergic synaptic transmission in rat hippocampal slices: a possible involvement of presynaptic calcium channels. Brain Res 1088:93–100. doi:10.1016/j.brainres.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  • Yan D et al (2008) Developmental exposure to lead causes inherent changes on voltage-gated sodium channels in rat hippocampal CA1 neurons. Neuroscience 153:436–445. doi:10.1016/j.neuroscience.2008.02.016

    Article  CAS  PubMed  Google Scholar 

  • Yang SG, Kittnar O (2010) New insights into application of cardiac monophasic action potential. Physiol Res 59:645–650

    CAS  PubMed  Google Scholar 

  • Yu K, Ge SY, Dai XQ, Ruan DY (2003) Effects of Pb2+ on the transient outward potassium current in acutely dissociated rat hippocampal neurons. Can J Physiol Pharmacol 81:825–833. doi:10.1139/y03-074

    Article  CAS  PubMed  Google Scholar 

  • Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li W, Xue Y, Zou F (2014) TRPC1 is involved in ca(2)(+) influx and cytotoxicity following Pb(2)(+) exposure in human embryonic kidney cells. Toxicol Lett 229:52–58. doi:10.1016/j.toxlet.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  • Zizza M, Giusi G, Crudo M, Canonaco M, Facciolo RM (2013) Lead-induced neurodegenerative events and abnormal behaviors occur via ORXRergic/GABA(a)Rergic mechanisms in a marine teleost. Aquat Toxicol 126:231–241. doi:10.1016/j.aquatox.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  • Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162. doi:10.1038/20200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Ferreira de Mattos.

Ethics declarations

Funding

This study was funded by grants PDT 7643, CSIC I + D p944, p146, p91, the CSIC human resources for International cooperation program and SNI ANII to GF, GF is also grateful to PEDECIBA, the Millenium Program (Chile) and the Chilean Conicyt International Cooperation Program. GF acknowledges encouragement and support from Drs. Brum, Ríos, Latorre, González, Escobar, Salkoff, Darszon, Bloom and Gundersen.

Conflict of interest

All the authors signing this manuscript declare that they have no conflict of interest with the procedures and results published in this paper. Gonzalo Ferreira declares that he has no conflict of interest. Carlos Costa declares that he has no conflict of interest. Florencia Savio declares that she has no conflict of interest. Mariana Alonso declares that she has no conflict of interest. Garth Nicolson declares that he has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed according to bio-ethical procedures accepted by the American Association for Laboratory Animal Sciences (IACUC). The protocol was submitted and approved by the Uruguayan Honorary Committee on Animal Ethics (CHEA), submitted by the corresponding author (071140-001788-09).

Additional information

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira de Mattos, G., Costa, C., Savio, F. et al. Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys Rev 9, 807–825 (2017). https://doi.org/10.1007/s12551-017-0303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0303-5

Keywords

Navigation