Skip to main content

Advertisement

Log in

Interaction of metal ions with neurotransmitter receptors and potential role in neurodiseases

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

There is increasing evidence that toxic metals play a role in diseases of unknown etiology. Their action is often mediated by membrane proteins, and in particular neurotransmitter receptors. This brief review will describe recent findings on the direct interaction of metal ions with ionotropic γ-aminobutyric acid (GABAA) and glutamate receptors, the main inhibitory and excitatory neurotransmitter receptors in the mammalian central nervous system, respectively. Both hyper and hypo function of these receptors are involved in neurological and psychotic syndromes and modulation by metal ions is an important pharmacological issue. The focus will be on three xenobiotic metals, lead (Pb), cadmium (Cd) and nickel (Ni) that have no biological function and whose presence in living organisms is only detrimental, and two trace metals, zinc (Zn) and copper (Cu), which are essential for several enzymatic functions, but can mediate toxic actions if deregulated. Despite limited access to the brain and tight control by metalloproteins, exogenous metals interfere with receptor performances by mimicking physiological ions and occupying one or more modulatory sites on the protein. These interactions will be discussed as a potential cause of neuronal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkondon M, Costa AC, Radhakrishnan V, Aronstam RS, Albuquerque EX (1990) Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead. FEBS Lett 261:124–130

    CAS  PubMed  Google Scholar 

  • Amico-Ruvio SA, Murthy SE, Smith TP, Popescu GK (2011) Zinc effects on NMDA receptor gating kinetics. Biophys J 100:1910–1918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668

    CAS  PubMed  Google Scholar 

  • Ascher P, Nowak L (1988) The role of divalent cations in the N-methyl-d-aspartate responses of mouse central neurones in culture. J Physiol 399:247–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baranano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    CAS  PubMed  Google Scholar 

  • Benters J, Schafer T, Beyersmann D, Hechtenberg S (1996) Agonist-stimulated calcium transients in PC12 cells are affected differentially by cadmium and nickel. Cell Calcium 20:441–446

    CAS  PubMed  Google Scholar 

  • Bonda DJ, Lee HG, Blair JA, Zhu XW, Perry G, Smith MA (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3:267–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bressler JP, Olivi L, Cheong JH, Kim Y, Maerten A, Bannon D (2007) Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol 26:221–229

    CAS  PubMed  Google Scholar 

  • Bush AI (2013) The metal theory of Alzheimer’s disease. J Alzheimers Dis 33:S277–S281

    PubMed  Google Scholar 

  • Büsselberg D, Michael D, Platt B (1994) Pb2+ reduces voltage- and N-methyl-d-aspartate (NMDA)-activated calcium channel currents. Cell Mol Neurobiol 14:711–722

    PubMed  Google Scholar 

  • Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casagrande S, Valle L, Cupello A, Robello M (2003) Modulation by Zn(2 +) and Cd(2 +) of GABA(A) receptors of rat cerebellum granule cells in culture. Eur Biophys J 32:40–46

    CAS  PubMed  Google Scholar 

  • Celentano JJ, Gyenes M, Gibbs TT, Farb DH (1991) Negative modulation of the gamma-aminobutyric acid response by extracellular zinc. Mol Pharmacol 40:766–773

    CAS  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    CAS  PubMed  Google Scholar 

  • Choi YB, Lipton SA (1999) Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23:171–180

    CAS  PubMed  Google Scholar 

  • Choi CJ, Kanthasamy A, Anantharam V, Kanthasamy AG (2006) Interaction of metals with prion protein: possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology 27:777–787

    CAS  PubMed  Google Scholar 

  • Choong G, Liu Y, Templeton DM (2014) Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 211C:54–65

    Google Scholar 

  • Christine CW, Choi DW (1990) Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J Neurosci 10:108–116

    CAS  PubMed  Google Scholar 

  • Collingridge GL, Olsen RW, Peters J, Spedding M (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology 56:2–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56

    CAS  PubMed  Google Scholar 

  • Doreulee N, Yanovsky Y, Haas HL (1997) Suppression of long-term potentiation in hippocampal slices by copper. Hippocampus 7:666–669

    CAS  PubMed  Google Scholar 

  • Draguhn A, Verdorn TA, Ewert M, Seeburg PH, Sakmann B (1990) Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5:781–788

    CAS  PubMed  Google Scholar 

  • Fayyazuddin A, Villarroel A, Le Goff A, Lerma J, Neyton J (2000) Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25:683–694

    CAS  PubMed  Google Scholar 

  • Fern R, Black JA, Ransom BR, Waxman SG (1996) Cd(2 +)-induced injury in CNS white matter. J Neurophysiol 76:3264–3273

    CAS  PubMed  Google Scholar 

  • Finney LA, O’Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936

    CAS  PubMed  Google Scholar 

  • Fisher JL (2002) A histidine residue in the extracellular N-terminal domain of the GABA(A) receptor alpha5 subunit regulates sensitivity to inhibition by zinc. Neuropharmacology 42:922–928

    CAS  PubMed  Google Scholar 

  • Fisher JL, Macdonald RL (1998) The role of an alpha subtype M2–M3 His in regulating inhibition of GABAA receptor current by zinc and other divalent cations. J Neurosci 18:2944–2953

    CAS  PubMed  Google Scholar 

  • Florea AM, Busselberg D (2006) Occurrence, use and potential toxic effects of metals and metal compounds. Biometals 19:419–427

    CAS  PubMed  Google Scholar 

  • Gaier ED, Eipper BA, Mains RE (2013) Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 91:2–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavazzo P, Gazzoli A, Mazzolini M, Marchetti C (2001) Lead inhibition of NMDA channels in native and recombinant receptors. NeuroReport 12:3121–3125

    CAS  PubMed  Google Scholar 

  • Gavazzo P, Mazzolini M, Tedesco M, Marchetti C (2006) Nickel differentially affects NMDA receptor channels in developing cultured rat neurons. Brain Res 1078:71–79

    CAS  PubMed  Google Scholar 

  • Gavazzo P, Zanardi I, Baranowska-Bosiacka I, Marchetti C (2008) Molecular determinants of Pb2+ interaction with NMDA receptor channels. Neurochem Int 52:329–337

    CAS  PubMed  Google Scholar 

  • Gavazzo P, Guida P, Zanardi I, Marchetti C (2009) Molecular determinants of multiple effects of nickel on NMDA receptor channels. Neurotox Res 15:38–48

    CAS  PubMed  Google Scholar 

  • Gavazzo P, Guida P, Marchetti C (2011a) The influence of calcium ions on nickel modulation of NMDA receptor currents. Metallomics 3:1376–1383

    CAS  PubMed  Google Scholar 

  • Gavazzo P, Tedesco M, Chiappalone M, Zanardi I, Marchetti C (2011b) Nickel modulates the electrical activity of cultured cortical neurons through a specific effect on N-methyl-d-aspartate receptor channels. Neuroscience 177:43–55

    CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    CAS  PubMed  Google Scholar 

  • Hartter DE, Barnea A (1988) Evidence for release of copper in the brain: depolarization-induced release of newly taken-up 67copper. Synapse 2:412–415

    CAS  PubMed  Google Scholar 

  • Herrup K (2010) Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 30:16755–16762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinkle P, Kinsella PA, Osterhoudt KC (1987) Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem 262:16333–16337

    CAS  PubMed  Google Scholar 

  • Hopt A, Korte S, Fink H et al (2003) Methods for studying synaptosomal copper release. J Neurosci Methods 128:159–172

    CAS  PubMed  Google Scholar 

  • Horenstein J, Akabas MH (1998) Location of a high affinity Zn2+ binding site in the channel of alpha1beta1 gamma-aminobutyric acidA receptors. Mol Pharmacol 53:870–877

    CAS  PubMed  Google Scholar 

  • Horning MS, Trombley PQ (2001) Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J Neurophysiol 86:1652–1660

    CAS  PubMed  Google Scholar 

  • Hosie AM, Dunne EL, Harvey RJ, Smart TG (2003) Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci 6:362–369

    CAS  PubMed  Google Scholar 

  • Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76

    CAS  PubMed  Google Scholar 

  • Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 30:761–765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson JP Jr, Zagotta WN (2001) Rotational movement during cyclic nucleotide-gated channel opening. Nature 412:917–921

    CAS  PubMed  Google Scholar 

  • Kalia LV, Kalia SK, Salter MW (2008) NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 7:742–755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH (2006) A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels. J Biol Chem 281:4823–4830

    CAS  PubMed  Google Scholar 

  • Kang HW, Moon HJ, Joo SH, Lee JH (2007) Histidine residues in the IS3–IS4 loop are critical for nickel-sensitive inhibition of the Cav2.3 calcium channel. FEBS Lett 581:5774–5780

    CAS  PubMed  Google Scholar 

  • Kardos J, Kovacs I, Hajos F, Kalman M, Simonyi M (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett 103:139–144

    CAS  PubMed  Google Scholar 

  • Kay AR, Toth K (2008) Is zinc a neuromodulator? Sci Signal 1:re3

    PubMed Central  PubMed  Google Scholar 

  • Kim H, Macdonald RL (2003) An N-terminal histidine is the primary determinant of alpha subunit-dependent Cu2+ sensitivity of alphabeta3gamma2L GABA(A) receptors. Mol Pharmacol 64:1145–1152

    CAS  PubMed  Google Scholar 

  • Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH (2007) NMDA receptors and schizophrenia. Curr Opin Pharmacol 7:48–55

    CAS  PubMed  Google Scholar 

  • Kumamoto E, Murata Y (1995) Characterization of GABA current in rat septal cholinergic neurons in culture and its modulation by metal cations. J Neurophysiol 74:2012–2027

    CAS  PubMed  Google Scholar 

  • Lee JM, Kim YJ, Ra H, Kang SJ, Han S, Koh JY, Kim YH (2008) The involvement of caspase-11 in TPEN-induced apoptosis. FEBS Lett 582:1871–1876

    CAS  PubMed  Google Scholar 

  • Legendre P, Westbrook GL (1990) The inhibition of single N-methyl-d-aspartate-activated channels by zinc ions on cultured rat neurones. J Physiol 429:429–449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811S

    CAS  PubMed  Google Scholar 

  • Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, Bankston LA (2002) Cysteine regulation of protein function—as exemplified by NMDA-receptor modulation. Trends Neurosci 25:474–480

    CAS  PubMed  Google Scholar 

  • Liu L, Wong TP, Pozza MF et al (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    CAS  PubMed  Google Scholar 

  • Liu Y, Wong TP, Aarts M et al (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857

    CAS  PubMed  Google Scholar 

  • Lopin KV, Thevenod F, Page JC, Jones SW (2012) Cd(2)(+) block and permeation of CaV3.1 (alpha1G) T-type calcium channels: candidate mechanism for Cd(2)(+) influx. Mol Pharmacol 82:1183–1193

    CAS  PubMed  Google Scholar 

  • Lutsenko S, Petris NJ (2003) Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. J Membr Biol 191:1–12

    CAS  PubMed  Google Scholar 

  • Ma JY, Narahashi T (1993) Differential modulation of GABAA receptor-channel complex by polyvalent cations in rat dorsal root ganglion neurons. Brain Res 607:222–232

    CAS  PubMed  Google Scholar 

  • Ma Z, Wong KY, Horrigan FT (2008) An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels. J Gen Physiol 131:483–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marchetti C (2003) Molecular targets of lead in brain neurotoxicity. Neurotox Res 5:221–236

    PubMed  Google Scholar 

  • Marchetti C (2013) Role of calcium channels in heavy metal toxicity. ISRN Toxicol 2013:184360

    PubMed Central  PubMed  Google Scholar 

  • Marchetti C, Gavazzo P (2003) Subunit-dependent effects of nickel on NMDA receptor channels. Brain Res Mol Brain Res 117:139–144

    CAS  PubMed  Google Scholar 

  • Marchetti C, Gavazzo P (2005) NMDA receptors as targets of heavy metal interaction and toxicity. Neurotox Res 8:1–14

    Google Scholar 

  • Marchetti C, Baranowska-Bosiacka I, Gavazzo P (2014) Multiple effects of copper on NMDA receptor currents. Brain Res 1542:20–31

    CAS  PubMed  Google Scholar 

  • Mathie A, Sutton GL, Clarke CE, Veale EL (2006) Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 111:567–583

    CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer ML, Vyklicky L Jr, Westbrook GL (1989) Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J Physiol 415:329–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGee TP, Houston CM, Brickley SG (2013) Copper block of extrasynaptic GABA(A) receptors in the mature cerebellum and striatum. J Neurosci 33:13431–13435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller PS, Aricescu AR (2014) Crystal structure of a human GABA receptor. Nature. doi:10.1038/nature13293

    Google Scholar 

  • Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575

    CAS  PubMed  Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    CAS  PubMed  Google Scholar 

  • Moorhouse SR, Carden S, Drewitt PN, Eley BP, Hargreaves RJ, Pelling D (1988) The effect of chronic low level lead exposure on blood–brain barrier function in the developing rat. Biochem Pharmacol 37:4539–4547

    CAS  PubMed  Google Scholar 

  • Nagaya N, Macdonald RL (2001) Two gamma2L subunit domains confer low Zn2+ sensitivity to ternary GABA(A) receptors. J Physiol 532:17–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narahashi T, Ma JY, Arakawa O, Reuveny E, Nakahiro M (1994) GABA receptor-channel complex as a target site of mercury, copper, zinc, and lanthanides. Cell Mol Neurobiol 14:599–621

    CAS  PubMed  Google Scholar 

  • Neal AP, Worley PF, Guilarte TR (2011) Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology 32:281–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2009) GABA(A) receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47

    CAS  PubMed  Google Scholar 

  • Paoletti P, Neyton J, Ascher P (1995) Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+. Neuron 15:1109–1120

    CAS  PubMed  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1–NR2A receptors. J Neurosci 17:5711–5725

    CAS  PubMed  Google Scholar 

  • Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158:126–136

    CAS  PubMed  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    CAS  PubMed  Google Scholar 

  • Peters C, Munoz B, Sepulveda FJ et al (2011) Biphasic effects of copper on neurotransmission in rat hippocampal neurons. J Neurochem 119:78–88

    CAS  PubMed  Google Scholar 

  • Popescu G (2005) Mechanism-based targeting of NMDA receptor functions. Cell Mol Life Sci 62:2100–2111

    CAS  PubMed  Google Scholar 

  • Rachline J, Perin-Dureau F, Le Goff A, Neyton J, Paoletti P (2005) The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J Neurosci 25:308–317

    CAS  PubMed  Google Scholar 

  • Rissman RA, De Blas AL, Armstrong DM (2007) GABA(A) receptors in aging and Alzheimer’s disease. J Neurochem 103:1285–1292

    CAS  PubMed  Google Scholar 

  • Rose F, Hodak M, Bernholc J (2011) Mechanism of copper(II)-induced misfolding of Parkinson’s disease protein. Sci Rep 1:11

    PubMed Central  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Mohler H (2001) GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194

    CAS  PubMed  Google Scholar 

  • Sadiq S, Ghazala Z, Chowdhury A, Busselberg D (2012) Metal toxicity at the synapse: presynaptic, postsynaptic, and long-term effects. J Toxicol 2012:132671

    PubMed Central  PubMed  Google Scholar 

  • Salazar-Weber NL, Smith JP (2011) Copper inhibits NMDA receptor-independent LTP and modulates the paired-pulse ratio after LTP in mouse hippocampal slices. Int J Alzheimers Dis 2011:864753

    PubMed Central  PubMed  Google Scholar 

  • Saxena U (2010) Alzheimer’s disease amyloid hypothesis at crossroads: where do we go from here? Expert Opin Ther Targets 14:1273–1277

    CAS  PubMed  Google Scholar 

  • Saxena NC, Macdonald RL (1994) Assembly of GABAA receptor subunits: role of the delta subunit. J Neurosci 14:7077–7086

    CAS  PubMed  Google Scholar 

  • Schlief ML, Gitlin JD (2006) Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol 33:81–90

    CAS  PubMed  Google Scholar 

  • Schlief ML, Craig AM, Gitlin JD (2005) NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 25:239–246

    CAS  PubMed  Google Scholar 

  • Schlief ML, West T, Craig AM, Holtzman DM, Gitlin JD (2006) Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci USA 103:14919–14924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    CAS  PubMed  Google Scholar 

  • Sensi SL, Paoletti P, Koh JY, Aizenman E, Bush AI, Hershfinkel M (2011) The neurophysiology and pathology of brain zinc. J Neurosci 31:16076–16085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharonova IN, Vorobjev VS, Haas HL (1998) High-affinity copper block of GABA(A) receptor-mediated currents in acutely isolated cerebellar Purkinje cells of the rat. Eur J Neurosci 10:522–528

    CAS  PubMed  Google Scholar 

  • Sharonova IN, Vorobjev VS, Haas HL (2000) Interaction between copper and zinc at GABA(A) receptors in acutely isolated cerebellar Purkinje cells of the rat. Br J Pharmacol 130:851–856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slotkin TA, Seidler FJ (2009) Oxidative and excitatory mechanisms of developmental neurotoxicity: transcriptional profiles for chlorpyrifos, diazinon, dieldrin, and divalent nickel in PC12 cells. Environ Health Perspect 117:587–596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slotkin TA, MacKillop EA, Ryde IT, Tate CA, Seidler FJ (2007) Screening for developmental neurotoxicity using PC12 cells: comparisons of organophosphates with a carbamate, an organochlorine, and divalent nickel. Environ Health Perspect 115:93–101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smart TG, Moss SJ, Xie X, Huganir RL (1991) GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. Br J Pharmacol 103:1837–1839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smart TG, Hosie AM, Miller PS (2004) Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist 10:432–442

    CAS  PubMed  Google Scholar 

  • Smith QR, Rabin O, Chikhale EG (1997) Deliver of metals to brain and the role of the blood–brain barrier. In: Connor JR (ed) Metals and oxidative damage in neurological disorders. Plenum Press, New York, pp 113–130

    Google Scholar 

  • Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990

    CAS  PubMed  Google Scholar 

  • Song H, Zheng G, Shen XF, Liu XQ, Luo WJ, Chen JY (2014) Reduction of brain barrier tight junctional proteins by lead exposure: role of activation of nonreceptor tyrosine kinase src via chaperon GRP78. Toxicol Sci 138:393–402

    CAS  PubMed  Google Scholar 

  • Struzynska L, Walski M, Gadamski R, Dabrowska-Bouta B, Rafalowska U (1997) Lead-induced abnormalities in blood–brain barrier permeability in experimental chronic toxicity. Mol Chem Neuropathol 31:207–224

    CAS  PubMed  Google Scholar 

  • Stys PK, You HT, Zamponi GW (2012) Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. J Physiol 590:1357–1368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunderman FW Jr (2001) Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann Clin Lab Sci 31:3–24

    CAS  PubMed  Google Scholar 

  • Tamano H, Takeda A (2011) Dynamic action of neurometals at the synapse. Metallomics 3:656–661

    CAS  PubMed  Google Scholar 

  • Tiffany-Castiglion E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22:577–592

    CAS  PubMed  Google Scholar 

  • Tjalve H, Henriksson J (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20:181–195

    CAS  PubMed  Google Scholar 

  • Toscano CD, Guilarte TR (2005) Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev 49:529–554

    CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trojsi F, Monsurro MR, Tedeschi G (2013) Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. Int J Mol Sci 14:15286–15311

    PubMed Central  PubMed  Google Scholar 

  • Trombley PQ, Shepherd GM (1996) Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons. J Neurophysiol 76:2536–2546

    CAS  PubMed  Google Scholar 

  • Turnlund JR (1998) Human whole-body copper metabolism. Am J Clin Nutr 67:960S–964S

    CAS  PubMed  Google Scholar 

  • Usai C, Barberis A, Moccagatta L, Marchetti C (1999) Pathways of cadmium influx in mammalian neurons. J Neurochem 72:2154–2161

    CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein—a possible molecular link between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  PubMed  Google Scholar 

  • Vallano ML, Lambolez B, Audinat E, Rossier J (1996) Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells. J Neurosci 16:631–639

    CAS  PubMed  Google Scholar 

  • Vinceti M, Bottecchi I, Fan A, Finkelstein Y, Mandrioli J (2012) Are environmental exposures to selenium, heavy metals, and pesticides risk factors for amyotrophic lateral sclerosis? Rev Environ Health 27:19–41

    CAS  PubMed  Google Scholar 

  • Vlachova V, Zemkova H, Vyklicky L Jr (1996) Copper modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur J Neurosci 8:2257–2264

    CAS  PubMed  Google Scholar 

  • Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013:898034

    PubMed Central  PubMed  Google Scholar 

  • Wang S, Hu P, Wang HL, Wang M, Chen JT, Tang JL, Ruan DY (2008) Effects of Cd(2 +) on AMPA receptor-mediated synaptic transmission in rat hippocampal CA1 area. Toxicol Lett 176:215–222

    CAS  PubMed  Google Scholar 

  • Wasterlain CG, Chen JWY (2008) Mechanistic and pharmacologic aspects of status epilepticus and its treatment with new antiepileptic drugs. Epilepsia 49:63–73

    CAS  PubMed  Google Scholar 

  • Weiser T, Wienrich M (1996) The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res 742:211–218

    CAS  PubMed  Google Scholar 

  • Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643

    CAS  PubMed  Google Scholar 

  • Wollmuth LP, Kuner T, Sakmann B (1998) Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J Physiol 506:13–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wooltorton JR, McDonald BJ, Moss SJ, Smart TG (1997) Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of beta subunits. J Physiol 505(Pt 3):633–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yakushiji T, Tokutomi N, Akaike N, Carpenter DO (1987) Antagonists of gaba responses, studied using internally perfused frog dorsal root ganglion neurons. Neuroscience 22:1123–1133

    CAS  PubMed  Google Scholar 

  • Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081–1094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zanella SG, Roberti di Sarsina P (2013) Personalization of multiple sclerosis treatments: using the chelation therapy approach. Explore (NY) 9:244–248

    Google Scholar 

  • Zheng W, Aschner M, Ghersi-Egea JF (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Ding Q, Chen Z, Yun H, Wang H (2013) Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-d-aspartate receptor function and neuronal excitotoxicity. J Biol Chem 288:24151–24159

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Marchetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchetti, C. Interaction of metal ions with neurotransmitter receptors and potential role in neurodiseases. Biometals 27, 1097–1113 (2014). https://doi.org/10.1007/s10534-014-9791-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9791-y

Keywords

Navigation