Skip to main content
Log in

Process Variable Optimization for Hot-Profiled Rolling of SAE 52100 Steel

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

SAE 52100 steel bars are extensively employed in the mining, shipping, forging, and bearing industries. During manufacturing of bars, the roll force (RF), roll torque (RT), cropping loss (CL), and drive energy (DE) are important production variables that must be monitored for high-quality output, scrap reduction, mill safety with minimum consumption of energy. Roll RPM, temperature of bloom, roll gap, bloom cross-section area, and diameter of roll are process characteristics that influence these response parameters. The impact of process variables on response variables during SAE 52100 steel rolling is investigated in this research. FORGE® NxT 1.1 was used to simulate the rolling process. Following statistical testing, the simulated findings were validated utilizing data from experiments acquired in a bar rolling plant. The results of an analysis of variance were used to find significant model terms. For minimising response parameters, the ideal rolling conditions have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim, N., Kim, H., & Jin, K. (2012). Optimal design to reduce the maximum load in ring rolling process. International Journal of Precision Engineering and Manufacturing, 13(10), 1821–1828.

    Article  Google Scholar 

  2. Na, D. H., & Lee, Y. (2013). A study to predict the creation of surface defects on material and suppress them in caliber rolling process. International Journal of Precision Engineering and Manufacturing, 14(10), 1727–1734.

    Article  Google Scholar 

  3. Lee, S. H., Lee, K. H., Lee, S. B., & Kim, B. M. (2013). Study of edge-cracking characteristics during thin-foil rolling of Cu–Fe–P strip. International Journal of Precision Engineering and Manufacturing, 14(12), 2109–2118.

    Article  Google Scholar 

  4. Lee, S. J., Lee, K. H., & Kim, B. M. (2015). Design of roll profile for LM-guide block in horizontal-vertical shape rolling by 3D-EFA. International Journal of Precision Engineering and Manufacturing, 16(4), 767–773.

    Article  Google Scholar 

  5. Kim, H. (2020). Reduction of burr in rolling process through shear mechanism analysis. International Journal of Precision Engineering and Manufacturing, 21(4), 599–612.

    Article  Google Scholar 

  6. Lee, S. J., Kim, S. M., Ko, D. C., & Kim, B. M. (2013). Design of roll profile in shape rolling of an irregular angle bar by the modified butterfly method. International Journal of Precision Engineering and Manufacturing, 14(1), 93–102.

    Article  Google Scholar 

  7. Lee, S. J., Lee, K. H., & Kim, B. M. (2015). Design of roll profile for complex shape in shape rolling by combined 3D-EFA and BWT. International Journal of Precision Engineering and Manufacturing, 16(2), 281–286.

    Article  Google Scholar 

  8. Lee, S. J., Lee, K. H., Ko, D. C., Lee, S. K., & Kim, B. M. (2015). Design of roll profile in shape rolling by 3D-EFA. International Journal of Precision Engineering and Manufacturing, 16(4), 701–706.

    Article  Google Scholar 

  9. Lee, K. H., Ko, D. C., Kim, D. H., Lee, S. B., Sung, N. M., & Kim, B. M. (2014). Design method for intermediate roll in multi-stage profile ring rolling process: The case for excavator idler rim. International journal of precision engineering and manufacturing, 15(3), 503–512.

    Article  Google Scholar 

  10. Lee, K. H., Ko, D. C., Kim, D. H., Lee, S. B., Sung, N. M., & Kim, B. M. (2014). Control method for centering rolls in radial-axial ring rolling process. International journal of precision engineering and manufacturing, 15(3), 535–544.

    Article  Google Scholar 

  11. Sun, J., Deng, J., Peng, W., & Zhang, D. (2021). Strip crown prediction in hot rolling process using random forest. International Journal of Precision Engineering and Manufacturing, 22(2), 301–311.

    Article  Google Scholar 

  12. Grassino, J., Vedani, M., Vimercati, G., & Zanella, G. (2012). Effects of skin pass rolling parameters on mechanical properties of steels. International Journal of Precision Engineering and Manufacturing, 13(11), 2017–2026.

    Article  Google Scholar 

  13. Kim, B. M., Lee, K. H., & Jeon, J. B. (2020). Short stroke control model for improving width precision at head and tail of slab in hot vertical-horizontal rolling process. International Journal of Precision Engineering and Manufacturing, 21(4), 699–710.

    Article  Google Scholar 

  14. Kim, K. S., Cho, Y. J., & Jeong, S. J. (2014). Simulation of CO2 emission reduction potential of the iron and steel industry using a system dynamics model. International Journal of Precision Engineering and Manufacturing, 15(2), 361–373.

    Article  Google Scholar 

  15. Cha, W. G., & Kim, N. (2013). Study on twisting and bowing of roll formed products made of high strength steel. International Journal of Precision Engineering and Manufacturing, 14(9), 1527–1533.

    Article  Google Scholar 

  16. Fang, G., Gao, W. R., & Zhang, X. G. (2015). Finite element simulation and experiment verification of rolling forming for the truck wheel rim. International Journal of Precision Engineering and Manufacturing, 16(7), 1509–1515.

    Article  Google Scholar 

  17. Zhu, X. L., Liu, D., Xing, L. J., Hu, Y., & Yang, Y. H. (2016). Microstructure evolution of Inconel 718 alloy during ring rolling process. International Journal of Precision Engineering and Manufacturing, 17(6), 775–783.

    Article  Google Scholar 

  18. Lee, J. B., & Kang, S. S. (2018). Numerical modeling of roller leveler for thick plate leveling. International Journal of Precision Engineering and Manufacturing, 19(3), 425–430.

    Article  Google Scholar 

  19. Rath, S. (2016). Computer simulation of hot rolling of flat products. Software Engineering, 4(6), 75–81.

    Google Scholar 

  20. Razani, N. A., Dariani, B. M., & Soltanpour, M. (2018). Microstructure and mechanical property improvement of X70 in asymmetrical thermomechanical rolling. The International Journal of Advanced Manufacturing Technology, 97(9), 3981–3997.

    Article  Google Scholar 

  21. Lim, H. B., Yang, H. I., & Kim, C. W. (2019). Analysis of the roll hunting force due to hardness in a hot rolling process. Journal of Mechanical Science and Technology, 33(8), 3783–3793.

    Article  Google Scholar 

  22. Lee, Y., Kim, H. J., & Hwang, S. M. (2002). An approximate model for predicting roll force in rod rolling. KSME International Journal, 16(4), 501–511.

    Article  Google Scholar 

  23. Bayoumi, L. S., Lee, Y., & Kim, H. J. (2002). Effect of roll gap change of oval pass on interfacial slip of workpiece and roll pressure in round-oval-round pass rolling sequence. KSME International Journal, 16(4), 492–500.

    Article  Google Scholar 

  24. Moon, Y. H., Jo, I. S., & Van Tyne, C. J. (2004). Control scheme using forward slip for a multi-stand hot strip rolling mill. KSME International Journal, 18(6), 972–978.

    Article  Google Scholar 

  25. Majumder, M. K., More, P. R., Chatterjee, S., Mandley, P. S., & Pal, S. K. (2016). Roll separating force in hot rolling under grooved rolls—A finite element analysis and experimental validation. Indian Journal of Engineering and Materials Science, 2016(23), 267–273.

    Google Scholar 

  26. Wang, X., & Hua, L. (2011). Analysis of guide modes in vertical hot ring rolling and their effects on the ring’s dimensional precision using FE method. Journal of Mechanical Science and Technology, 25(3), 655–662.

    Article  Google Scholar 

  27. Hanoglu, U., & Šarler, B. (2018). Multi-pass hot-rolling simulation using a meshless method. Computers and Structures, 194, 1–14.

    Article  Google Scholar 

  28. Chan, W., Wang, A., & Shoup, J. M. (1999). Real time torque measurement of rolling mill drive. IEEE, 1, 557–564.

    Google Scholar 

  29. Bagheripoor, M., & Bisadi, H. (2014). An investigation on the roll force and torque fluctuations during hot strip rolling process. Production and Manufacturing Research, 2(1), 128–141.

    Article  Google Scholar 

  30. Kwak, W. J., Lee, J. H., Hwang, S. M., & Kim, Y. H. (2002). A precision on-line model for the prediction of roll force and roll power in hot-strip rolling. Metallurgical and Materials Transactions A, 33(10), 3255–3272.

    Article  Google Scholar 

  31. Zhang, S. H., Zhao, D. W., & Gao, C. R. (2012). The calculation of roll torque and roll separating force for broadside rolling by stream function method. International Journal of Mechanical Sciences, 57(1), 74–78.

    Article  Google Scholar 

  32. Said, A., Lenard, J. G., Ragab, A. R., & Elkhier, M. A. (1999). The temperature, roll force and roll torque during hot bar rolling. Journal of Materials Processing Technology, 88(1–3), 147–153.

    Article  Google Scholar 

  33. Bayoumi, L. S., & Lee, Y. (2004). Effect of interstand tension on roll load, torque and workpiece deformation in the rod rolling process. Journal of Materials Processing Technology, 145(1), 7–13.

    Article  Google Scholar 

  34. Mori, K., Osakada, K., & Oda, T. (1982). Simulation of plane-strain rolling by the rigid-plastic finite element method. International Journal of Mechanical Sciences, 24(9), 519–527.

    Article  Google Scholar 

  35. Hwang, S. M., & Kobayashi, S. (1984). Preform design in plane-strain rolling by the finite-element method. International Journal of Machine Tool Design and Research, 24(4), 253–266.

    Article  Google Scholar 

  36. Klosterman, L. E., Richter, R. T., Crowley, M. D., & Maslanka, A. (2002). U.S. Patent No. 6,453,712.

  37. Chun, M. S., & Moon, Y. H. (2000). Optimization of the amount of edging to increase rolling yields in a plate mill. Journal of Materials Processing Technology, 104(1–2), 11–16.

    Article  Google Scholar 

  38. Moon, C. H., & Lee, Y. (2009). An approximate model for local strain variation over material thickness and its applications to thick plate rolling process. ISIJ International, 49(3), 402–407.

    Article  Google Scholar 

  39. Byon, S. M. (2013). Numerical and experimental approach to investigate plane-view shape and crop loss in multistage plate rolling. Transactions of the Korean Society of Mechanical Engineers A, 37(9), 1117–1125.

    Article  Google Scholar 

  40. Li, X., Wang, H. Y., Ding, J. G., Xu, J. J., & Zhang, D. H. (2015). Analysis and prediction of fishtail during VH hot rolling process. Journal of Central South University, 22(4), 1184–1190.

    Article  Google Scholar 

  41. Nalawade, R. S., Date, P. P., Mahadik, K. N., Cheekatla, V. S. K., Balasubramanian, V., & Singh, R. (2012). A novel method to reduce end crop loss on rolled bars. Steel Tech. J, 6, 57–66.

    Google Scholar 

  42. Rentsch, R., & Prinz, C. (2012). Finite element analysis of the hot rolling process on the origins of inhomogeneities related to steel bar distortion. Materialwissenschaft und Werkstofftechnik, 43(1–2), 73–77.

    Article  Google Scholar 

  43. Dogra, M., Sharma, V. S., Sachdeva, A., Suri, N. M., & Dureja, J. S. (2010). Tool wear, chip formation and workpiece surface issues in CBN hard turning: A review. International Journal of Precision Engineering and Manufacturing, 11(2), 341–358.

    Article  Google Scholar 

  44. Choi, Y. (2019). Effects of cutting speed on surface integrity and fatigue performance of hard machined surfaces. International Journal of Precision Engineering and Manufacturing, 20(1), 139–146.

    Article  MathSciNet  Google Scholar 

  45. Singh, G., & Singh, P. K. (2022). Effect of process parameters on roll separating force, driving torque and end crop length during grooved hot rolling of SAE 1020 steel. Journal of Manufacturing Processes, 79, 1003–1016.

    Article  Google Scholar 

  46. Singh, G., & Singh, P. K. (2022). Effect of process parameters on performance of grooved hot rolling of SAE 4340 steel bars. Materials and Manufacturing Processes, 1–14.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pradeep K. Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Singh, P.K. Process Variable Optimization for Hot-Profiled Rolling of SAE 52100 Steel. Int. J. Precis. Eng. Manuf. 24, 1425–1433 (2023). https://doi.org/10.1007/s12541-023-00819-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00819-2

Keywords

Navigation