Skip to main content
Log in

Characterization of bacteriocin-like inhibitory substances (BLIS) from lactic acid bacteria isolated from traditional Azerbaijani cheeses

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The lactic acid bacteria (LAB) of southern Caucasus region present a special interest due to the diversity of lactic flora used for fermentations by various local populations during thousands of years. Four LAB strains, not identified previously, isolated from Motal and Brunza typical Azerbaijani cheeses were subjected to phenotypic identification and three of them could be identified as Lactobacillus paracasei subsp. paracasei and one as Lactobacillus rhamnosus. Test strains such as Lactobacillus bulgaricus 340 and Saccharomyces cerevisiae were inhibited by the four isolated strains. Antibacterial activity against Escherichia coli HB 101 was detected in Lactobacillus paracasei BN ATS 8w and L. rhamnosus FAZ 16m. L. paracasei BN ATS 5w and 8w, and L. rhamnosus FAZ 16m showed inhibitory effect on Staphylococcus aureus Cip 9973. The inhibition of Candida pseudotropicalis was detected only when using L. paracasei species BN ATS 5w and 7w. Culture of Listeria innocua was insensitive to the antimicrobial substances of all the studied strains. Complete inactivation or significant reduction in antibacterial activity was observed after treatment of cell-free supernatants with pronase E and proteinase K, but not with trypsin (except for L. rhamnosus FAZ 16m), indicating the protein nature of the active agents. Amylase treatment totally inactivated the substances of L. paracasei, what implies the importance of glycosylation for the activity. The activities of all the bacteriocin-like substances from studied LABs were stable over a wide pH range from 3 to 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Daeschel MA (1989) Food Technol 43:164–167

    CAS  Google Scholar 

  2. De Vuyst L, Vandamme EJ (1994) In: de Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic and Professional, London, pp 91–142

  3. De Vuyst L, Vandamme EJ (1994) In: de Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic and Professional, London, pp 1–12

  4. Schillinger U (1990) In: Bills DD, Kung S (eds) Biotechnology and food safety. Butterworth-Heinemann, Boston, pp 55–74

  5. Atrih A, Rekhif N, Moir AJG, Lebrihi A, Lefebvre G (2001) Int J Food Microbiol 68:93–104

    Article  PubMed  CAS  Google Scholar 

  6. Messens W, De Vuyst L (2002) Int J Food Microbiol 72:31–43

    Article  PubMed  CAS  Google Scholar 

  7. Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Appl Microbiol Biot 50:253–256

    Article  PubMed  CAS  Google Scholar 

  8. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Appl Environ Microb 66:4084–4090

    Article  CAS  Google Scholar 

  9. Schillinger U, Holzapfel WH (1996) Int J Food Microbiol 33:3–5

    Article  Google Scholar 

  10. Nes IF, Diep BD, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Anton Leeuw Int J G 70:113–128

    Article  CAS  Google Scholar 

  11. Klaenhammer TR (1993) FEMS Microbiol Rev 12:39–86

    PubMed  CAS  Google Scholar 

  12. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Int J Food Microbiol 71:1–20

    Article  PubMed  CAS  Google Scholar 

  13. Ross RP, Morgan S, Hill C (2002) Int J Food Microbiol 79:3–16

    Article  PubMed  Google Scholar 

  14. Nes IF, Holo H (2000) Biopolymers 55:50–61

    Article  PubMed  CAS  Google Scholar 

  15. Ferchichi M, Frere J, Mabrouk K, Manai M (2001) FEMS Microbiol Lett 205:49–55

    Article  PubMed  CAS  Google Scholar 

  16. Simon L, Fremaux C, Cenatiempo Y, Berjeaud JM (2002) Appl Environ Microb 68:6416–6420

    Article  CAS  Google Scholar 

  17. Muriana PM, Klaenhammer TR (1991) Appl Environ Microb 57:114–121

    CAS  Google Scholar 

  18. Joerger MC, Klaenhammer TR (1990) J Bacteriol 172:6339–6347

    PubMed  CAS  Google Scholar 

  19. Ghrairi T, Manai M, Berjeaud JM, Frere J (2004) J Appl Microbiol 97:621–628

    Article  PubMed  CAS  Google Scholar 

  20. Vaughan EE, Daly C, Fitzgerald GF (1992) J Appl Bacteriol 73:299–308

    PubMed  CAS  Google Scholar 

  21. Thompson JK, Collins MA, Mercer WD (1996) J Appl Bacteriol 80:338–348

    PubMed  CAS  Google Scholar 

  22. Elotmani F, Revol-Junelles AM, Assobhei O, Milliere JB (2002) Curr Microbiol 44:10–17

    Article  PubMed  CAS  Google Scholar 

  23. Tagg JR, McGiven AR (1971) Appl Microbiol 21:943

    PubMed  CAS  Google Scholar 

  24. Gonzales B, Kunka J (1987) Appl Environ Microb 49:627–633

    Google Scholar 

  25. Schillinger U, Lucke FK (1989) Appl Environ Microb 55:1901–1906

    PubMed  CAS  Google Scholar 

  26. Skytta E, Hereijgers H, Mattila-Sandholm W (1991) Food Microbiol 8:231–237

    Article  Google Scholar 

  27. Toba T, Samant SK, Yoshioka E, Itoh T (1991) Lett Appl Microbiol 13:281–286

    CAS  Google Scholar 

  28. Garver KI, Muriana M (1993) Int J Food Microbiol 19:241–258

    Article  PubMed  CAS  Google Scholar 

  29. Valdés-Stauber N, Götz H, Busse M (1991) Int J Food Microbiol 13:119–130

    Article  PubMed  Google Scholar 

  30. Ryser ET, Maisnier-Patin S, Gratadoux JJ, Richard J (1994) Int J Food Microbiol 21:237–246

    Article  PubMed  CAS  Google Scholar 

  31. Coventry MJ, Gordon JB, Wilcock A, Harmark K, Davidson BE, Hickey MW, Hillier AJ, Wan J (1997) J Appl Microbiol 83:248–258

    Article  PubMed  CAS  Google Scholar 

  32. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriol Rev 40:722–756

    PubMed  CAS  Google Scholar 

  33. Jack RW, Tagg JR, Ray B (1995) Microbiol Rev 59:171–200

    PubMed  CAS  Google Scholar 

  34. Lewus CB, Sun S, Montville JT (1992) Appl Environ Microbiol 58:143–149.

    PubMed  CAS  Google Scholar 

  35. Keppler K, Geiser R, Holzapfel WH (1994) Food Microbiol 11:39–45

    Article  CAS  Google Scholar 

  36. Losteinkit C, Uchiyama K, Ochi S, Takaoka T, Nagahisa K, Shioya S (2001) J Biosci Eng 91:390–395

    CAS  Google Scholar 

  37. Atanassova M, Choiset Y, Dalgalarrondo M, Chobert J-M, Dousset X, Ivanova I, Haertlé T (2003) Int J Food Microbiol 87:63–73

    Article  PubMed  CAS  Google Scholar 

  38. Boris S, Barbes C (2000) Microbes Infect 2:543–546

    Article  PubMed  CAS  Google Scholar 

  39. McGroatry JA (1993) FEMS Immunol Med Mic 61:251–264

    Article  Google Scholar 

  40. Piard JC, Delorme F, Giraffa G, Commissaire J, Desmazeaud M (1990) Neth Milk Dairy J 44:143–158

    CAS  Google Scholar 

  41. Lewus C, Kaiser A, Montville T (1991) Appl Environ Microb 57:1683–1688

    CAS  Google Scholar 

  42. Kojic M, Svircevic J, Banina A, Topisirovic L (1991) Appl Environ Microb 6:1835–1837

    Google Scholar 

  43. Gonzales B, Arca P, Mayo B, Suarez J (1994) Appl Environ Microb 6:2158–2163

    Google Scholar 

  44. Ivanova I, Miteva V, Stefanova T, Pantev A, Budakov I, Danova S, Moncheva P, Nikolova I, Dousset X, Boyaval P (1998) Int J Food Microbiol 42:147–158

    Article  PubMed  CAS  Google Scholar 

  45. De Klerk HC, Smit JA (1967) J Gen Microbiol 48:309–316

    PubMed  CAS  Google Scholar 

  46. Upretti GC, Hinsdill RD (1973) Antimicrob Agents Ch 4:487–497

    Google Scholar 

  47. Piard J, Desmazeaud M (1992) Lait 72:113–142

    CAS  Google Scholar 

  48. Jimenez-Diaz R, Ruiz-Barba JL, Cathcart DP, Holo H, Nes IF, Sletten KH, Warner PJ (1995) Appl Environ Microb 61:4459–4463

    CAS  Google Scholar 

  49. Suma K, Misra MC, Varadaraj MC (1998) Int J Food Microbiol 40:17–25

    Article  PubMed  CAS  Google Scholar 

  50. Corsetti A, Gobbetti M (2002) In: Rodinki H, Fuguai JW, Fox PF (eds) Encyclopedia of dairy sciences, Academic Press, San Diego, CA, vol 3, pp 1501–1507

  51. Schneusner DL, Hood LL, Harmon LG (1973) J Milk Food Technol 36:249–252

    Google Scholar 

  52. Smith JL, Buchanan RL, Palumbo SA (1983) J Food Protect 46:545–555

    CAS  Google Scholar 

  53. Lozo J, Vukasinovic M, Strahinic I, Topisirovic L (2004) J Food Protect 67:2727–2734

    CAS  Google Scholar 

  54. Cardi A (2004) J Ind Microbiol Biot 29:303–308

    Article  CAS  Google Scholar 

  55. Sameshima TC, Magome K, Takeshita K, Arihara M, Itoh M, Kondo Y (1998) Int J Food Microbiol 41:1–7

    Article  PubMed  CAS  Google Scholar 

  56. Ennahar S, Aoude-Werner D, Sorokine O, van Dorsselaer A, Bringel F, Hubert JC, Hasselmann C (1996) Appl Environ Microb 62:4381–4387

    CAS  Google Scholar 

  57. Rodriguez E, Gonzales B, Gaya P, Nunez M, Medina M (2000) Int Dairy J 10:7–15

    Article  CAS  Google Scholar 

  58. Navarro L, Zarazaga M, Saenz J, Ruiz-Larrea F, Torres C (2000) J Appl Microbiol 88:44–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by an ECO-NET grant no. 08139XA and by the grant of French Embassy in Azerbaijan Republic. The authors express their gratitude to Dr. Hugues Baltzinger and to French Ministry of Foreign Affaires for a grant from the French Embassy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Chobert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurban oglu Gulahmadov, S., Batdorj, B., Dalgalarrondo, M. et al. Characterization of bacteriocin-like inhibitory substances (BLIS) from lactic acid bacteria isolated from traditional Azerbaijani cheeses. Eur Food Res Technol 224, 229–235 (2006). https://doi.org/10.1007/s00217-006-0338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0338-5

Keywords

Navigation