Skip to main content
Log in

Reutericyclin: biological activity, mode of action, and potential applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Reutericyclin is an inhibitory compound produced by sourdough isolates of Lactobacillus reuteri that is structurally but not functionally related to naturally occurring tetramic acids. It is bacteriostatic or bactericidal to gram-positive bacteria based on its activity as a proton-ionophore, and a broad range of food-related spoilage organisms and pathogens is inhibited by reutericyclin. Gram-negative bacteria are resistant to reutericyclin because of the barrier properties of their outer membrane, and resistance of beer-spoiling lactobacilli towards hop bitter acids provides cross-protection to reutericyclin. Remarkably, reutericyclin-producing strains were shown to persist for a period of 10 years in an industrial sourdough fermentation, and reutericyclin was shown to be produced in concentrations active against competitors during growth of L. reuteri in sourdough. Based on the known properties of reutericyclin and L. reuteri, reutericyclin-producing strains may have applications in the biopreservation of foods. Furthermore, these strains were shown to colonize reconstituted lactobacilli-free mice at high levels. Therefore, they could serve as a suitable model system to evaluate a possible impact of antimicrobial compounds on the intestinal microflora of humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander K (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001–2005

    Article  CAS  PubMed  Google Scholar 

  • Axelsson LT, Chung TC, Dobrogosz WJ, Lindgren SE (1989) Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial. Ecol. Health Disease 2:131–136

    Google Scholar 

  • Bateup JM, McConnell MA, Jenkinson HF, Tannock GW (1995) Comparison of Lactobacillus strains with respect to bile salt hydrolase activity, colonization of the gastrointestinal tract, and growth rate of the murine host. Appl Environ Microbiol 61:1147–1149

    CAS  PubMed  Google Scholar 

  • Bennik MHJ, Verheul A, Abee T, Naaktgeboren-Stoffels G, Gorris LGM, Smid EJ (1997) Interactions of nisin and pediocin PA-1 with closely related lactic acid bacteria that manifest over 100-fold differences in bacteriocin sensitivity. Appl Environ Microbiol 63:3628–3639

    CAS  PubMed  Google Scholar 

  • De Vuyst L, Vandamme EJ (1994) Antimicrobial potential of lactic acid bacteria. In: de Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria. Chapman and Hall, London, pp 91–142

  • Eijsink VGH, Axelsson L, Diep DB, Havarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria: an example of biological warfare and communication. Antonie van Leeuwenhoek 81:639–654

    Article  CAS  PubMed  Google Scholar 

  • Gänzle MG, Vogel RF (2002) Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. Int J Food Microbiol 80:31–45

    Google Scholar 

  • Gänzle MG, Vogel RF (2003) Studies on the mode of action of reutericyclin. Appl Environ Microbiol 69:1305–1307

    Article  PubMed  Google Scholar 

  • Gänzle MG, Hertel C, Hammes WP (1995) Antimicrobial activity in lactobacilli from sourdough. In: Scheffers WA, van Dijken JP (eds) Beijerinck Centennial. Microbiol physiology and gene regulation: Emerging principles and applications. Delft University Press, Delft, pp 380–381

    Google Scholar 

  • Gänzle MG, Hertel C, Hammes WP (1999) Resistance of Escherichia coli and Salmonella against nisin and curvacin A. Int J Food Microbiol 48:37–50

    Google Scholar 

  • Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333

    Google Scholar 

  • Gänzle MG, Ulmer HM, Vogel RF (2001) High pressure inactivation of Lactobacillus plantarum in a model beer system. J Food Sci 66:1174–1181

    Google Scholar 

  • Gänzle MG, Korakli M, Vogel RF (2002) Reutericyclin production during sourdough fermentation. In: 7th meeting on lactic acid bacteria, September 2002, Egmond aan Zee

  • Gao Y, van Belkum MJ, Stiles ME (1999) The outer membrane of Gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl Environ Microbiol 65:4329–4333

    CAS  PubMed  Google Scholar 

  • Gitterman CO (1965) Antitumor, cytotoxic, and antibacterial activities of tenuazonic acid and congeneric tetramic acids. J Med Chem 8:483–486

    CAS  PubMed  Google Scholar 

  • Hayashi N, Ito M, Horiike S, Taguchi H (2001) Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer. Appl Microbiol Biotechnol 55:596–603

    Article  CAS  PubMed  Google Scholar 

  • Helander IM, Mattila-Sandholm T (2000) Permeability barrier of the Gram-negative bacterial outer membrane with special reference to nisin. Int J Food Microbiol 60:153–161

    Google Scholar 

  • Heng NCK, Bateup JM, Loach DM, Wu X, Jenkinson HF, Morrison M, Tannock GW (1999) Influence of different functional elements of plasmid pGT232 on maintenance of recombinant plasmids in Lactobacillus reuteri populations in vitro and in vivo. Appl Environ Microbiol 65:5378–5385

    CAS  PubMed  Google Scholar 

  • Höltzel A, Ganzle MG, Nicholson GJ, Hammes WP, Jung G (2000) The first low molecular weight antibiotic from lactic acid bacteria: reutericyclin, a new tetramic acid. Angew Chem Int Ed Engl 39:2766–2768

    Article  PubMed  Google Scholar 

  • Hugas M (1998) Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Sci. 49:S139-S150

    Google Scholar 

  • Kabuki T, Saito T, Kawai Y, Uemura J, Itoh T (1997) Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. Int J Food Microbiol 34:145–156

    Article  CAS  PubMed  Google Scholar 

  • Kalchayanand N, Sikes A, Dunne CP, Ray B (1998) Factors influencing death and injury of foodborne pathogens by hydrostatic pressure-pasteurization. Food Microbiol 15:207–214

    Google Scholar 

  • Katla T, Naterstad K, Vancanneyt M, Swings J, Axelsson L (2003) Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Appl Environ Microbiol 69:4431–4437

    Article  CAS  PubMed  Google Scholar 

  • Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie van Leeuwenhoek 82:3–27

    Article  CAS  PubMed  Google Scholar 

  • Lebrun MH, Nicolas L, Boutar M, Gaudemer F, Ranomenjanahary S, Gaudemer A (1988) Relationships between the structure and the phytotoxicity of the fungal toxin tenuazonic acid. Phytochemistry 27:77–84

    Article  CAS  Google Scholar 

  • Leroy F, de Vuyst L (2000) Sakacins. In: Naidu AS (ed) Natural food antimicrobial systems. CRC , Boca Raton, Florida, pp 589–610

  • Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moeller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690

    Google Scholar 

  • Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 7:149–163

    CAS  PubMed  Google Scholar 

  • Luthi-Peng Q, Dileme FB, Puhan Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59:289–296

    Article  PubMed  Google Scholar 

  • Marfori EC, Bamba T, Kajiyama S, Fukusaki E, Kobayashi A (2002) Biosynthetic studies of the tetramic acid antibiotic trichosetin. Tetrahedron 58:6655–6658

    Article  CAS  Google Scholar 

  • Marquardt U, Schmid D, Jung G (2000) Racemic synthesis of the new antibiotic tetramic acid reutericyclin. Syn Lett 8:1131–1132

    Google Scholar 

  • McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis, and mode of action. FEMS Microbiol Rev 25:285–308

    CAS  PubMed  Google Scholar 

  • Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–387

    CAS  PubMed  Google Scholar 

  • Nikaido H (1996) Molecular architecture and assembly of cell parts. Outer membrane. In: Neidhardt FC (ed) Escherichia coli and Salmonella. ASM Press, Washington DC, pp 29–47

  • Röcken W, Spicher G (1993) Fadenziehende Bakterien—Vorkommen, Bedeutung, Gegenmaßnahmen. Getreide Mehl Brot 47:30–35

    Google Scholar 

  • Rodriguez E, Arques JL, Rodriguez R, Nunez M, Medina M (2003) Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett Appl Microbiol 37:259–263

    Article  CAS  PubMed  Google Scholar 

  • Rosenkvist H, Hansen A (1995) Contamination profiles and characterisation of Bacillus species in wheat bread and raw materials for bread production. Int J Food Microbiol 26:353–363

    Google Scholar 

  • Rosenquist H, Hansen A (1998) The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and B. licheniformis isolated from wheat bread. J Appl Microbiol 85:621–631

    Article  CAS  Google Scholar 

  • Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16

    Article  PubMed  Google Scholar 

  • Royles BJL (1995) Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem Rev 95:1981–2001

    CAS  Google Scholar 

  • Sakamoto K, Margolles A, van Veen HW, Konings WN (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183:5371–5375

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, van Veen HW, Saito H, Kobayashi H, Konings WN (2002) Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis. Appl Environ Microbiol 68:5374–5378

    CAS  PubMed  Google Scholar 

  • Sami M, Suzuki K, Sakamoto K, Kadokura H, Kitamoto K, Yoda K (1998) A plasmid pRH45 of Lactobacillus brevis confers hop resistance. J Gen Appl Microbiol 44:361–363

    CAS  PubMed  Google Scholar 

  • Simpson WJ (1993) Studies on the sensitivity of lactic acid bacteria to hop bitter acids. J Inst Brew 99:405–411

    CAS  Google Scholar 

  • Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol 7:158–164

    Article  CAS  Google Scholar 

  • Stickings CE, Townsend RJ (1961) Metabolites of Alternaria tenuis auct.: the biosynthesis of tenuazonic acid. Biochem J 78:412–418

    CAS  Google Scholar 

  • Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70:331–345

    CAS  Google Scholar 

  • Suzuki K, Sami M, Kadokura H, Nakajima H, Kitamoto K (2002) Biochemical characterization of horA-independent hop resistance mechanisms in Lactobacillus brevis. Int J Food Microbiol 76:223–230

    Google Scholar 

  • Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40:722–756

    Google Scholar 

  • Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679

    CAS  PubMed  Google Scholar 

  • Tannock GW, Chrichton C, Welling GW, Koopman JP, Midtvedt T (1988) Reconstitution of the gastrointestinal microflora of lactibacillus-free mice. Appl Environ Microbiol 54:2971–2975

    CAS  PubMed  Google Scholar 

  • Toba T, Samant SK, Yoshioka E, Ito T (1991) Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA6. Lett. Appl. Microbiol. 13:281–286

    Google Scholar 

  • Tungjaroenchai W, Drake MA, White CH (2001) Influence of adjunct cultures on ripening of reduced fat Edam cheeses. J Dairy Sci 84:2117–2124

    CAS  PubMed  Google Scholar 

  • Vaara M (1993) Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 47:2255–2260

    Google Scholar 

  • Vogel RF, Ehrmann MA, Gänzle MG (2002) Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem. Antonie van Leeuwenhoek 81:631–638

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Heng NCK, Hammes WP, Loach DM, Tannock GW, Hertel C (2003) Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol 69:2044–2051

    Article  CAS  PubMed  Google Scholar 

  • Weiß A, Molnar P, Wolf G, Hammes WP (2001) Maßnahmen zur Reduzierung des hygienischen Risikos bei Keimlingen. In: Symposium Schnellmethoden und Automatisierung in der Lebensmittelmikrobiologie, Lemgo, July 2001

  • Weiß A, Wolf G, Hammes WP (2002) Verbesserung der hygienischen Sicherheit von roh zu verzehrenden Keimlingen mit Hilfe von Schutzkulturen. In: 4. Fachsymposium der Fachgruppe Lebensmittelmikrobiologie, Karlsruhe March 2002

Download references

Acknowledgements

Clarissa Schwab is acknowledged for her careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Gänzle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gänzle, M.G. Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64, 326–332 (2004). https://doi.org/10.1007/s00253-003-1536-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1536-8

Keywords

Navigation