Skip to main content
Log in

Differential Response of Two Contrasting Melon (Cucumis melo L.) Genotypes to Drought Stress

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The present study aims to gain insights into the response mechanisms of drought stress tolerance among two contrasting melon (Cucumis melo L.) genotypes. Drought stress was imposed by polyethylene glycol (10%) for 7 days and various physiochemical and molecular characteristics were analyzed on different days of drought stress treatment. Results revealed that the drought-sensitive genotype (MG-II) was significantly affected by drought stress, as evidenced from the elevation in hydrogen peroxide (H2O2), malondialdehyde content (MDA), and electrolyte leakage (EC). Furthermore, drought stress significantly hindered the vegetative growth, chlorophyll fluorescence, photosynthetic pigments, and leaf gas exchange characteristics of MG-II genotypes. In contrast, the drought-resistant genotype (MG-I) exhibited a robust response to drought stress, characterized by marked upregulation in the antioxidant enzyme genes and activities, which in turn resulted in a decrease in oxidative damage and improved vegetative growth and photosynthetic functions. Additionally, transmission electron microscopy (TEM) revealed that the oxidative damage triggered by drought stress was more severe in the MG-II genotype, which exhibited an irregular chloroplast shape compared to the MG-I. These findings may potentially enhance our comprehension of coping strategies involved in drought stress tolerance and provide materials for future melon breeding and molecular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All experimental data that support the findings of this study are available upon request from the corresponding author.

References

  • Agehara S, Leskovar DI (2012) Characterizing concentration effects of exogenous abscisic acid on gas exchange, water relations, and growth of muskmelon seedlings during water stress and rehydration. J Amer Soc Hort Sci 137(6):400–410

    Article  CAS  Google Scholar 

  • Aghaie P, Hosseini Tafreshi SA, Ebrahimi MA, Haerinasab M (2018) Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Sci Hortic 232:1–12

    Article  Google Scholar 

  • Ahanger MA, Morad-Talab N, Abd-Allah EF, Ahmad P, Hajiboland R (2016) Plant growth under drought stress: significance of mineral nutrients. Water Stress Crop Plants Sustain Approach 2:649–668

    Article  Google Scholar 

  • Ahmad S, Wang GY, Muhammad I, Farooq S, Kamran M, Ahmad I, Zeeshan M, Javed T, Ullah S, Huang JH (2022) Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maize. Chem Biol Technol Agri 9(1):1–14

    Google Scholar 

  • Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013) Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Change Biol 19(4):1188–1196

    Article  Google Scholar 

  • Ansari W, Atri N, Singh B, Pandey S (2017a) Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biol Plant 61:333–341

    Article  CAS  Google Scholar 

  • Ansari WA, Atri N, Singh B, Pandey S (2017b) Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biol Plant 61(2):333–341

    Article  CAS  Google Scholar 

  • Ansari W, Atri N, Singh B, Kumar P, Pandey S (2018) Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica 56(4):1019–1030

    Article  CAS  Google Scholar 

  • Ansari WA, Atri N, Ahmad J, Qureshi MI, Singh B, Kumar R, Rai V, Pandey S (2019) Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). PloS one 14(9):e0222647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Bajji M, Kinet J-M, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16(9):2448–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braniša J, Jenisová Z, Porubská M, Jomová K, Valko M (2021) Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. J Microbiol Biotechnol Food Sci 2021:61–64

    Google Scholar 

  • Chandrasekar VK, Sairam R, Srivastava G (2000) Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress. J Agron Crop Sci 185(4):219–227

    Article  CAS  Google Scholar 

  • Chaturvedi AK, Surendran U, Gopinath G, Chandran KM, Nk A, Ct MF (2019) Elucidation of stage specific physiological sensitivity of okra to drought stress through leaf gas exchange, spectral indices, growth and yield parameters. Agric Water Manag 222:92–104

    Article  Google Scholar 

  • Chen Z, Xu J, Wang F, Wang L, Xu Z (2019) Morpho-physiological and proteomic responses to water stress in two contrasting tobacco varieties. Sci Rep 9(1):18523

    Article  CAS  PubMed Central  Google Scholar 

  • Chen S, Li Y, Zhao Y, Li G, Zhang W, Wu Y, Huang L (2021) iTRAQ and RNA-Seq analyses revealed the effects of grafting on fruit development and ripening of oriental melon (Cucumis melo L. var. makuwa). Gene 766:145142

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Wei H, Sun R, Tian Z, Zheng X (2016) Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80. Anal Biochem 494:37–39

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Zhang L, Wei H, Wang H, Lu J, Yu S (2020) Transcriptome analysis reveals a gene expression pattern associated with fuzz fiber initiation induced by high temperature in Gossypium barbadense. Genes 11(9):1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevilly S, Dolz-Edo L, Martínez-Sánchez G, Morcillo L, Vilagrosa A, López-Nicolás JM, Blanca J, Yenush L, Mulet JM (2021) Distinctive traits for drought and salt stress tolerance in melon (Cucumis melo L). Front Plant Sci. https://doi.org/10.3389/fpls.2021.777060

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi R, Kaur N, Gupta AK (2012) Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.)

  • Dubey R, Pandey BK, Sawant SV, Shirke PA (2023) Drought stress inhibits stomatal development to improve water use efficiency in cotton. Acta Physiol Plant 45(2):30

    Article  CAS  Google Scholar 

  • Efeoğlu B, Ekmekçi Y, Çiçek N (2009) Physiological responses of three maize cultivars to drought stress and recovery. S Afr J Bot 75(1):34–42

    Article  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62(8):2599–2613

    Article  CAS  PubMed  Google Scholar 

  • Fei X, Li J, Kong L, Hu H, Tian J, Liu Y, Wei A (2020) miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress. Plant Physiol Biochem 150:196–203

    Article  CAS  PubMed  Google Scholar 

  • Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plant 138(4):430–439

    Article  CAS  PubMed  Google Scholar 

  • Garty J, Weissman L, Tamir O, Beer S, Cohen Y, Karnieli A, Orlovsky L (2000) Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Physiol Plant 109(4):410–418

    Article  CAS  Google Scholar 

  • Ghani MI, Saleem S, Rather SA, Rehmani MS, Alamri S, Rajput VD, Kalaji HM, Saleem N, Sial TA, Liu M (2022) Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere 289:133202

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gitea MA, Gitea D, Tit DM, Purza L, Samuel AD, Bungău S, Badea GE, Aleya L (2019) Orchard management under the effects of climate change: implications for apple, plum, and almond growing. Environ Sci Pollut Res Int 26(10):9908–9915

    Article  CAS  PubMed  Google Scholar 

  • Goodarzian Ghahfarokhi M, Mansurifar S, Taghizadeh-Mehrjardi R, Saeidi M, Jamshidi AM, Ghasemi E (2015) Effects of drought stress and rewatering on antioxidant systems and relative water content in different growth stages of maize (Zea mays L.) hybrids. Arch Agron Soil Sci 61(4):493–506

    Article  CAS  Google Scholar 

  • Guidi L, Nali C, Ciompi S, Lorenzini G, Soldatini GF (1997) The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. J Exp Bot 48(1):173–179

    Article  CAS  Google Scholar 

  • Guo XY, Wang Y, Zhao PX, Xu P, Yu GH, Zhang LY, Xiong Y, Xiang CB (2019) AtEDT1/HDG11 regulates stomatal density and water-use efficiency via ERECTA and E2Fa. New Phytol 223(3):1478–1488

    Article  CAS  PubMed  Google Scholar 

  • Hamedi S, Soltani F, Alabboud M (2022) Screening snake melon inbred lines under simulated drought. Int J Veg Sci 28(2):156–169

    Article  Google Scholar 

  • Hameed A, Iqbal N, Malik SA (2009) Mannose-induced modulations in antioxidants, protease activity, lipid peroxidation, and total phenolics in etiolated wheat leaves. J Plant Growth Regul 28:58–65

    Article  CAS  Google Scholar 

  • Hamurcu M, Khan MK, Pandey A, Ozdemir C, Avsaroglu ZZ, Elbasan F, Omay AH, Gezgin S (2020) Nitric oxide regulates watermelon (Citrullus lanatus) responses to drought stress. 3 Biotech 10(11):494

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Hoque MA, Burritt DJ, Fujita M (2014) Proline protects plants against abiotic oxidative stress mechanisms. In: Oxidative damage to plants. Academic press, pp 477–522

  • Huang Z, Zou Z, He C, He Z, Zhang Z, Li J (2011) Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 339:391–399

    Article  CAS  Google Scholar 

  • Ibrahim W, Qiu CW, Zhang C, Cao F, Shuijin Z, Wu F (2019) Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. Physiol Plant 165(2):155–168

    Article  CAS  PubMed  Google Scholar 

  • Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, Abbas A, Parveen A, Atiq MN, Alshaya H, Zin El-Abedin TK, Fahad S (2022) Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front Plant Sci. https://doi.org/10.3389/fpls.2021.799318

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung S, Kim JS, Cho KY, Tae GS, Kang BG (2000) Antioxidant responses of cucumber (Cucumis sativus) to photoinhibition and oxidative stress induced by norflurazon under high and low PPFDs. Plant Sci 153(2):145–154

    Article  CAS  PubMed  Google Scholar 

  • Kar RK (2011) Plant responses to water stress: role of reactive oxygen species. Plant Signal Behav 6(11):1741–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61(2):201–209

    Article  CAS  Google Scholar 

  • Kaur H, Kohli SK, Khanna K, Bhardwaj R (2021) Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. Physiol Plant 172(2):935–962

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Yuan J, Niu P, Xie J, Jiang W, Huang Y, Bie Z (2014) Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon. PLoS One 9(1):e87197

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Weng J, Zhang Q, Yu L, Yao Q, Chang L, Niu Q (2018) Physiological and biochemical responses of Cucumis melo L. chloroplasts to low-phosphate stress. Front Plant Sci 9:1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisar S, Motafakkerazad R, Hossain MM, Rahman I (2012) Causes, effects and responses. Water Stress 25(1):33

    Google Scholar 

  • Liu R, Jiang X, Guan H, Li X, Du Y, Wang P, Mou H (2009a) Promotive effects of alginate-derived oligosaccharides on the inducing drought resistance of tomato. J Ocean Univ China 8(3):303–311

    Article  CAS  Google Scholar 

  • Liu Z-J, Zhang X-L, Bai J-G, Suo B-X, Xu P-L, Wang L (2009b) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hortic 121(2):138–143

    Article  CAS  Google Scholar 

  • Liu W, Jiang Y, Wang C, Zhao L, Jin Y, Xing Q, Li M, Lv T, Qi H (2020) Lignin synthesized by CmCAD2 and CmCAD3 in oriental melon (Cucumis melo L.) seedlings contributes to drought tolerance. Plant Mol Biol 103(6):689–704

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhang H, Zhang N, Dong C, Ji H, Yu J, Ban Z, Yan R, Zhang T, Chen C, Jiang Y (2023) Effects of ozone treatment on gene profiling involved in ASA-GSH cycle in postharvest cantaloupe. Sci Hortic 312:111843

    Article  CAS  Google Scholar 

  • Lv Y-M, Elnur E, Wang W, Thakur K, Du J, Li H-N, Ma W-P, Liu Y-Q, Ni Z-J, Wei Z-J (2022) Hydrogen sulfide treatment increases the antioxidant capacity of fresh Lingwu Long Jujube (Ziziphus jujuba cv. Mill) fruit during storage. Curr Res Food Sci 5:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandizvo T, Odindo AO, Mashilo J, Magwaza LS (2022) Drought tolerance assessment of citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.) accessions based on morphological and physiological traits. Plant Physiol Biochem 180:106–123

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wei C, Zhang X (2016) Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci 7:644

  • Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Osmolytes Plants Acclimation to Changing Environment: Emerging Omics Technologies, pp 37–68

  • Nankishore A, Farrell AD (2016) The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol 202:75–82

    Article  CAS  PubMed  Google Scholar 

  • Ober ES, Sharp RE (2007) Regulation of root growth responses to water deficit. Adv Mol Breed Drought Salt Tolerant Crops, pp 33–53

  • Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M (2021) Osmoregulation and its actions during the drought stress in plants. Physiol Plant 172(2):1321–1335

    Article  CAS  PubMed  Google Scholar 

  • Parveen A, Liu W, Hussain S, Asghar J, Perveen S, Xiong Y (2019) Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plants 8(10):431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petridis A, Therios I, Samouris G, Koundouras S, Giannakoula A (2012) Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem 60:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rai GK, Rai NP, Rathaur S, Kumar S, Singh M (2013) Expression of rd29A: AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 69:90–100

    Article  CAS  PubMed  Google Scholar 

  • Reddy AR, Chaitanya K, Jutur P, Sumithra K (2004a) Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ Exp Bot 52(1):33–42

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004b) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  CAS  Google Scholar 

  • Rouhi V, Samson R, Lemeur R, Damme PV (2007) Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environ Exp Bot 59(2):117–129

    Article  CAS  Google Scholar 

  • Scandalios J (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Chandra S, Crouch J (2004) Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res 88(2–3):115–127

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J Bot 2012:217037

    Google Scholar 

  • Sharma SP, Leskovar DI, Crosby KM, Volder A, Ibrahim AMH (2014) Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation. Agric Water Manag 136:75–85

    Article  Google Scholar 

  • Sharma S, Leskovar D, Crosby K (2019) Genotypic differences in leaf gas exchange and growth responses to deficit irrigation in reticulatus and inodorus melons (Cucumis melo L.). Photosynthetica 57(1):237–247

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14(3):407–426

    Article  CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16(6):13561–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah I, Ashraf M, Zafar Y (2008) Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.): leaf gas exchange and productivity. Flora Morphol Distrib Funct Ecol Plants 203(2):105–115

    Google Scholar 

  • Wang C-J, Yang W, Wang C, Gu C, Niu D-D, Liu H-X, Wang Y-P, Guo J-H (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu H, Yu F, Hu B, Jia Y, Sha H, Zhao H (2019) Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci Rep 9(1):1–11

    Google Scholar 

  • Weng J, Li P, Rehman A, Wang L, Gao X, Niu Q (2021) Physiological response and evaluation of melon (Cucumis melo L.) germplasm resources under high temperature and humidity stress at seedling stage. Sci Hortic 288:110317

    Article  CAS  Google Scholar 

  • Yan Z, Guo S, Shu S, Sun J, Tezuka T (2011) Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress. African J Biotechnol 10(80):18381–18390

    CAS  Google Scholar 

  • Yang S, Xiong X, Arif S, Gao L, Zhao L, Shah IH, Zhang Y (2020) A calmodulin-like CmCML13 from Cucumis melo improved transgenic Arabidopsis salt tolerance through reduced shoot’s Na(+), and also improved drought resistance. Plant Physiol Biochem 155:271–283

    Article  CAS  PubMed  Google Scholar 

  • Yousef AF, Ali MM, Rizwan HM, Ahmed MA, Ali WM, Kalaji HM, Elsheery N, Wróbel J, Xu Y, Chen F (2021) Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings. PLoS One 16(5):e0250210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan XK, Yang ZQ, Li YX, Liu Q, Han W (2016) Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 54(1):28–39

    Article  CAS  Google Scholar 

  • Zahedyan A, Jahromi AA, Zakerin A, Abdossi V, Torkashvand AM (2020) Effects of fertilizer types on the quantitative and qualitative attributes of muskmelon (Cucumis melo L. cv. Ahlam) under different levels of drought stress. Plant Arch 20(2):3669–3677

    Google Scholar 

  • Zahedyan A, Aboutalebi Jahromi A, Zakerin A, Abdossi V, Mohammadi Torkashvand A (2022) Nitroxin bio-fertilizer improves growth parameters, physiological and biochemical attributes of cantaloupe (Cucumis melo L.) under water stress conditions. J Saudi Soc Agric Sci 21(1):8–20

    Google Scholar 

  • Zhang H, Zhang X, Dong C, Zhang N, Ban Z, Li L, Yu J, Hu Y, Chen C (2020a) Effects of ozone treatment on SOD activity and genes in postharvest cantaloupe. RSC Adv 10(30):17452–17460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YB, Yang SL, Dao JM, Deng J, Shahzad AN, Fan X, Li RD, Quan YJ, Bukhari SAH, Zeng ZH (2020b) Drought-induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS One 15(7):e0235845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Yu X, Ottosen C-O, Rosenqvist E, Zhao L, Wang Y, Yu W, Zhao T, Wu Z (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Zou L, Li Y, Yao X, Xu F, Deng X, Zhang D, Lin H (2018) Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Biotechnol J 16(12):2063–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Melon and Watermelon Industry Technical System, China (2017-2021).

Author information

Authors and Affiliations

Authors

Contributions

AR and QN conceptualized; AR conducted the experiment and analyzed the data with the help of JW, PL, JY, SR, MK, IS, SG, and LC; AR wrote the manuscript and QN supervised the project. All authors have read and agreed to the final draft of the manuscript.

Corresponding author

Correspondence to Qingliang Niu.

Ethics declarations

Conflict of interest

The authors declare no known conflict of interest exists.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, A., Weng, J., Li, P. et al. Differential Response of Two Contrasting Melon (Cucumis melo L.) Genotypes to Drought Stress. J. Plant Biol. 66, 519–534 (2023). https://doi.org/10.1007/s12374-023-09398-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-023-09398-1

Keywords

Navigation