Skip to main content
Log in

Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

Responses of two muskmelon (Cucumis melo L.) genotypes (drought tolerant SC-15 and drought susceptible EC-564755) were analyzed at 0, 7, 14, and 21 d of progressive water stress. Although water deficit caused a significant decline in relative water content, the magnitude of reduction was lower in SC-15. Electrolyte leakage, hydrogen peroxide, and malonydialdehyde generation were higher in EC-564755, whereas accumulation of proline was higher in SC-15. Higher activities of antioxidant enzymes, such as catalase, superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase, and higher expression of the respective genes were recorded in SC-15 than in EC-564755. Expressions of DREB2C and DREB3 in SC-15 revealed a fluctuating pattern with down-regulation on days 7 and 21 of water stress, whereas up-regulation was observed on day 14. Concurrently, both genes in EC-564755 showed continuous down-regulation on days 7, 14, and 21 of water stress. Expressions of RD22 and dehydrin recorded on days 7, 14, and 21 were lower in SC-15. The cluster analysis showed that, these two genotypes had a clear distinction in physiological and biochemical properties and gene expressions under water stress and the genotype SC-15 had more efficient osmoprotectant mechanism than genotype EC-564755 under water deficit conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

DREB:

dehydration-responsive element-binding

MDA:

malondialdehyde; nding protein

DWD:

days of water deficit

EL:

electrolyte leakage

GR:

glutathione reductase

LPO:

lipid peroxidation

POD:

guaiacol peroxidase

RWC:

relative water content

SOD:

superoxide dismutase

References

  • Akhtar, M., Jaiswal, A., Taj, G., Jaiswal, J.P., Qureshi, M.I., Singh, N.K.: DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. — J. Genet. 91: 385–395, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Ansari, W.A., Pandey, S., Atri, N., Bahadur, A., Singh, A.K., Singh, M.: Physiological and yield response of muskmelon genotypes (Cucumis melo L.) against drought stress. In: Naik, P.S., Singh, M., Rai, A.B., Saha, S. (ed.): Abiotic and Biotic Stress Management in Vegetable Crops. Pp. 72. IIVR, Varanasi 2013.

    Google Scholar 

  • Bates, L.S., Walden, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Cabello, M.J., Castellanos, M.T., Romojaro, F., Martinez, M.C., Ribas, F.: Yield and quality of melon grown under different irrigation and nitrogen rates. — Agr. Water Manage. 96: 866–874, 2009.

    Article  Google Scholar 

  • Cellier, F., Conejero, G., Breitler, J.C., Casse, F.: Molecular and physiological responses to water-deficit in drought-tolerant and drought-sensitive sunflower lines (Helianthus annuus L): accumulation of dehydrin transcripts correlates with tolerance. — Plant Physiol. 116: 319–328, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves, M.M., Maroco, J.P., Pereira, J.S.: Under-standing plant responses to drought from genes to the whole plant. — Funct. Plant Biol. 30: 239–264, 2003.

    Article  CAS  Google Scholar 

  • Choudhary, K.K., Agrawal, S.B.: Cultivar specificity of tropical mung bean (Vigna radiate L.) to elevated ultraviolet-B: changes in antioxidative defense system, nitrogen metabolism and accumulation of jasmonic and salicylic acids. — Environ. exp. Bot. 99: 122–132, 2014.

    Article  CAS  Google Scholar 

  • Close, T.J.: Dehydrins: a commonalty in the response of plants to dehydration and low temperature. — Physiol. Plant. 100: 291–296, 1997.

    Article  CAS  Google Scholar 

  • Coombs, J., Hall, D.O., Long, S.P., Scurlock, J.M.O.: Techniques in Bioproductivity and Photosynthesis. — Pergamon Press, Oxford 1987.

    Google Scholar 

  • Deeba, F., Pandey, A.K., Ranjan, S., Mishra, A., Singh, R., Sharma, Y.K., Shirke, P.A., Pandey, V.: Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. — Plant Physiol. Biochem. 53: 6–18, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Noctor, G.: Ascorbate and glutathione: the heart of the redox hub. — Plant Physiol. 155: 2–18, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenberg, M., Shi, B.J., Gustafson, P., Langridge, P.: A transgenic transcription factor (TaDREB3) in barley affects the expression of microRNAs and other small non-coding RNAs. — PLoS ONE 7: e42030, 2012.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D.A.T., Ryan, P.D.: PAST: paleontological statistics software package for education and data analysis. — Palaeontolia Electronica 4: 1–9, 2001.

    Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stechiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Jana, S., Choudhury, M.A.: Glycolate metabolism of three submerged aquatic angiosperm during aging. — Aquat. Bot. 12: 345–354, 1981.

    Article  Google Scholar 

  • Jimenez, S., Dridi, J., Gutierrez, D., Moret, D., Irigoyen, J.J., Moreno, M.A., Gogorcena, Y.: Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. — Tree Physiol. 33: 1061–1075, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Khare, N., Goyary, D., Singh, N.K., Shah, P., Rathore, M., Anandhan, S., Sharma, D., Arif, M., Ahmed, Z.: Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. — Plant Cell Tissue Organ Cult. 103: 267–277, 2010.

    Article  CAS  Google Scholar 

  • Lee, S.J., Kang, J.Y., Park, H.J., Kim, M.D., Bae, M.S., Choi, H.I., Kim, S.Y.: DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. — Plant Physiol. 153: 716–727, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y.J., Hai, R.L., Du, X.H., Jiang, X.N., Lu, H.: Overexpression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. — Plant Breed. 128: 404–410, 2009.

    Article  CAS  Google Scholar 

  • Lim, C.J., Yang, K.A., Hong, J.K., Choi, J.S., Yun, D.J., Hong, J.C., Chung, W.S., Lee, S.Y., Cho, M.J., Lim, C.O.: Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. — J. Plant Res. 119: 373–383, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCt method. — Methods 25: 402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  • McKersie, B.D., Hoekstra, F., Krieg, L.: Differences in the susceptibility of plant membrane lipids to peroxidation. — Biochim. biophys. Acta 1030: 119–126, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxides in spinach chloroplast. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nakashima, K., Shinwari, Z.K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high salinity-responsive expression. — Plant mol. Biol. 42: 657–665, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Nouri, A., Etminan, A., da Silva, J.A.T., Mohammadi, R.: Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turgidum var. durum Desf.). — Aust. J. Crop Sci. 5: 8–16, 2011.

    Google Scholar 

  • Pandey, S., Ansari, W.A., Jha, A., Bhatt, K.V., Singh, B.: Evaluation of melons and indigenous Cucumis spp. genotypes for drought tolerance. — Acta horticult. 979: 335–339, 2013.

    Article  Google Scholar 

  • Polle, A.: Dissecting the superoxide dismutase-ascorbate glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. — Plant Physiol. 126: 445–462, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, C.L., Zhao, Y.Y., Mi, H.B., Chen, X.H., Guo, L.J., Mao, L.C.: Role of antioxidative system during the development and senescence of cucumber fruit. — Biol. Plant. 56: 793–797, 2012.

    Article  CAS  Google Scholar 

  • Rai, G.K., Rai, N.P., Rathaur, S., Kumar, S., Singh, M.: Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. — Plant Physiol. Biochem. 69: 90–100, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Rozen, S., Skaletsky, H.J.: Primer3. http://www-genome.wi.mit. edu/genome_software/other/primer3.html 1998.

    Google Scholar 

  • Sanchez, R.E., Rubio-Wilhelmi, M.M., Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., Romero, L., Ruiz, J.M.: Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. — Plant Sci. 178: 30–40, 2010.

    Article  Google Scholar 

  • Sarowar, S., Kim, E.N., Kim, Y.J., Ok, S.H., Kim, K.D., Hwang, B.K., Shin, J.S.: Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. — Plant Sci. 169: 55–63, 2005.

    Article  CAS  Google Scholar 

  • Sebnem, K.: Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). — Afr. J. agr. Res. 7: 775–781, 2012.

    Google Scholar 

  • Shah, K., Kumar, R.G., Verma, S., Dubey, R.S.: Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. — Plant Sci. 161: 1135–1144, 2001.

    Article  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. — J. exp. Bot. 58: 221–227, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B.K., Sharma, S.R., Singh, B.: Antioxidant enzymes in cabbage: variability and inheritance of superoxide dismutase peroxidase and catalase. — Sci. Hort. 124: 9–13, 2010.

    Article  CAS  Google Scholar 

  • Valentovic, P., Luxova, M., Kolarovic, L., Gasparikova, O.: Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. — Plant Soil Environ. 52: 186–191, 2006.

    Article  Google Scholar 

  • Wang, C.Q., Li, R.C.: Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. — Acta Physiol. Plant. 30: 841–847, 2008.

    Article  CAS  Google Scholar 

  • Wang, H., Zhang, L., Ma, J., Li, X., Li, Y., Zhang, R., Wang, R.: Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage. — Agr. Sci. China 9: 633–641, 2010.

    Article  Google Scholar 

  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y.: Effects of free proline accumulation in petunias under drought stress. — J. exp. Bot. 56: 1975–1981, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Yue, Y., Zhang, M., Zhang, J., Tian, X., Duan, L., Li, Z.: Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. — J. exp. Bot. 63: 3741–3748, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Kirkham, M.B.: Antioxidant responses to drought in sunflower and sorghum seedlings. — New Phytol. 132: 361–373, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Choi, D.W., Fenton, R., Close T.J.: Expression of the barley dehydrin multigene family and the development of freezing tolerance. — Mol. gen. Genet. 246: 145–153, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pandey.

Additional information

Acknowledgement: The authors acknowledge the generous support of the National Agricultural Innovation Project (NAIP), New Delhi. MAN-JRF-SRF provided to WAA by University Grant Commission (UGC), New Delhi, India, is fully acknowledged.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, W.A., Atri, N., Singh, B. et al. Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biol Plant 61, 333–341 (2017). https://doi.org/10.1007/s10535-016-0694-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0694-3

Additional key words

Navigation