Skip to main content

Advertisement

Log in

Physiological traits and cereal germplasm for sustainable agricultural systems

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Plant breeding is not a discipline that readily comes to mind when agricultural sustainability is being considered. Sustainability is normally associated with farming practices such as stubble retention, direct-drilling, or amelioration practices such as contour farming or liming, or rotation practices for nutrient management and disease control. The contribution of plant breeding will be in providing germplasm for these changed practices and devising new methods of selection. This paper reviews opportunities where plant breeding can contribute to improvements in sustainable farming practices. The emphasis is on rainfed cropping systems and cereal improvement. The main contribution for breeding is to (i) increase crop water and nutrient use so that less escapes from the root profile; and (ii) preserve the soil resource with conservation farming systems by developing cultivars specifically adapted to changed farming systems and competitive cultivars that reduce herbicide use. To achieve these outcomes identification of desirable traits, suitable selection methods and development of appropriate germplasm are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson WK (1992) Increasing grain yield and water use of wheat in a rainfed mediterranean type environment. Aust J Agric Res 43:1–17

    Article  Google Scholar 

  • Angus JF, van AF, Herwaarden (2001) Increasing water use and water-use efficiency in dryland wheat. Agron J 93:290–298

    Google Scholar 

  • Araki H, Iijima M (2001) Deep rooting in winter wheat: rooting nodes of deep roots in two cultivars with deep and shallow root systems. Plant Prod Sci 4:215–219

    PubMed  CAS  Google Scholar 

  • Azcón R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685

    Article  Google Scholar 

  • Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Phys 27:625–637

    CAS  Google Scholar 

  • Batten GD, Khan MA (1987) Effect of time of sowing on grain yield and nutrient uptake of wheats with contrasting phenology. Aust J Expt Agric 27:881–87

    Article  Google Scholar 

  • Borrell AK, Hammer GL (2000) Nitrogen dynamics and the physiological basis for stay-green in sorghum. Crop Sci 40:1295–1307

    Article  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing NW, Reichardt Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Env Microbiol 68:3067–3075

    Article  CAS  Google Scholar 

  • Cartwright B, Zarcinas BA, Spouncer LR (1986) Boron toxicity in South Australian barley crops. Aust J Agric Res 37:351–359

    Article  CAS  Google Scholar 

  • Chan KY, Mead JA, Roberts WP (1987) Poor early growth and yield of wheat under direct drilling. Aust J Agric Res 38:791–800

    Google Scholar 

  • Cochrane VL, Elliot LF, Papendick RI (1977) The production of phytotoxin from surface crop residues. Soil Soc Am Proc 41:903–908

    Article  Google Scholar 

  • Cohen Y, Tadmor NH (1969) Effects of temperature on the elongation of seedling roots of some grasses and legumes. Crop Sci 9:189–192

    Article  Google Scholar 

  • Coleman RK, Gill GS, Rebetzke GJ (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Aust J Agric Res 52:1235–1246

    Article  CAS  Google Scholar 

  • Collard BCY, Grams RA, Bovill WD, Percy CD, Jolley R, Lehmensiek A, Wildermuth G, Sutherland MW (2005) Development of molecular markers for crown rot resistance in wheat: mapping of QTLs for seeding resistance in a ‘2-49’ × ‘Janz’ population. Plant Breed 124:532–537

    Article  CAS  Google Scholar 

  • Cornish PS (1987) Crop and pasture plant selection for new cultural systems. In: Cornish PS, Pratley JE (eds), Tillage: new directions in Australian agriculture. Inkata, Melbourne, pp355–378

    Google Scholar 

  • Cox DJ (1991) Breeding for hard red winter wheat cultivars adapted to conventional-till and no-till systems in northern latitudes. Euph 58:57–63

    Article  Google Scholar 

  • Cox TS, Bender M, Picone C, Van DL, Tassel, Holland JB, Brummer EC, Zoeller BE, Paterson AH, Jackson WW (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:51–91

  • Davidson JL, Jones DB, Christian KR (1990) Winter feed production and grain yield in mixtures of spring and winter wheats. Aust J Agric Res 41:1–18

    Article  Google Scholar 

  • Duggan BL, Richards RA, van Herwaarden AF (2005) Agronomic evaluation of a tiller inhibition gene (tin) in wheat. II. Growth and partitioning of assimilate. Aust J Agric Res 56:179–186

    Article  CAS  Google Scholar 

  • Ellis MH, Rebetzke GJ, Chandler PM, Bonnett DG, Speilmeyer W, Richards RA (2004) The effect of different height reducing genes on the early growth of wheat. Func Plant Biol 31: 583–589

    Article  CAS  Google Scholar 

  • Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  • French RJ, Schultz JE (1984) Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield water use and climate. Aust J Agric Res 35: 743–764

    Article  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev Phytopath 42:243–270

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE, Lyshede OB (1999) Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant and Soil 211:269–281

    Article  CAS  Google Scholar 

  • Gardner WK, Flood RG (1993) Less waterlogging damage with long season wheats. Cer Res Comm 21:337–343

    Google Scholar 

  • Gilbert GS, Handelsman J, Parke JL (1994) Root camouflage and disease control. Phytopathology 84:222–225

    Google Scholar 

  • Gomez-Macpherson H, Richards RA (1995) Effect of sowing time on yield and agronomic characteristics of wheat in south-eastern Australia. Aust J Agric Res 46:1381–1399

    Article  Google Scholar 

  • Gomez-Macpherson H, Richards RA, Masle J (1998) Growth of near-isogenic wheat lines differing in development—plants in a simulated canopy. Ann Bot 82:323–330

    Article  Google Scholar 

  • Hall EF, Cholick FA (1989) Cultivar x tillage interaction of hard red spring wheat cultivars. Agron J 81:789–792

    Article  Google Scholar 

  • Jefferies SP, Pallotta MA, Paull JG, Karakousis A, Kretschmer JM, Manning S, Islam AKMR, Langridge P, Chalmers KJ (2000) Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theor App Genet 101:767–777

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Gardner PA, Angus JF, Koletz E (1994) Effects of Brassica crops on the growth and yield of wheat. Aust J Agric Res 45: 529–545

    Article  Google Scholar 

  • Kirkegaard JA, Howe GN, Simpfendorfer S, Angus JF, Gardner PA, Hutchinson P (2001) Poor wheat yield response to conservation cropping—causes and consequences during 10 years of the Harden tillage trial. In: Proceedings of the 10th Australian Agronomy conference, Hobart, Australia

  • Kirkegaard JA, Lilley JM (2006) Root penetration—a benchmark to identify soil andplant limitations to rooting depth in wheat. Aust J Expt Agric 47 (in press)

  • Kumar K, Goh KM (2000) Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield and nitrogen recovery. Adv Agron 68:197–319

    CAS  Google Scholar 

  • Liao M, Fillery IRP, Palta JA (2004) Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Func Plant Biol 31:121–129

    Article  CAS  Google Scholar 

  • Linde-Laursen I, Jensen HP, Joergensen JH (1973) Resistance of Triticale, Aegilops, and Haynaldia species to the take-all fungus, Gaeumannomyces graminis. Zeitschrift fur Pflanzenzuchtung 70:200–213

    Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Func Plant Biol 31:1105–1114

    Article  CAS  Google Scholar 

  • López-Castañeda C, Richards RA, Farquhar GD, Williamson RE (1996) Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Sci 36:1257–66

    Article  Google Scholar 

  • Martin JK, Kemp JR (1980) Carbon loss from roots of wheat cultivars. Soil Biol Biochem 12:551–554

    Article  CAS  Google Scholar 

  • Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Micro Ecol 48:338–348

    Article  CAS  Google Scholar 

  • Miller HJ, Henke G, van Veen JA (1989) Variation and composition of bacterial populations in the rhizospheres of maize, wheat, and grass cultivars. Can J Microbiol 35:656–660

    Article  Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (2000a) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74

    Article  CAS  Google Scholar 

  • Munns R, Hare RA, Colmer TD (2000b) Salt Tolerance in wheat and barley. Proceedings 8th International Barley Genetics Symposium. 238–245

  • Munns R, King RW (1988) Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants. Plant Physiol 88:703–708

    Article  PubMed  CAS  Google Scholar 

  • Neal JL, Larson RI, Atkinson TG (1973) Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant Soil 39: 209–212

    Article  Google Scholar 

  • Newey A (2006) Decomposition of plant litter and carbon turnover as a function of soil depth. PhD thesis. Australian National University, Canberra

  • Nuttall JG, Armstrong RD, Connor DJ, Matassa VJ (2003) Interrelationships between edaphic factors potentially limiting cereal growth on alkaline soils in north–western Victoria. Aust J Soil Res 41:277–292

    Article  CAS  Google Scholar 

  • O’Brien L (1979) Genetic variability of root growth in wheat (Triticum aestivum L.). Aust J Agric Res 30:587–595

    Article  Google Scholar 

  • Ogbonnaya FC, Subrahmanyam NC, Moullet O, de Majnik J, Eagles HA, Brown JS, Eastwood RF, Kollmorgen J, Appels R, Lagudah ES (2001) Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat. Aust J Agric Res 52:1367–1374

    Article  CAS  Google Scholar 

  • O’Toole JC, Bland WL (1987) Genotypic variation in crop plant root systems. Adv Agron 41:91–145

    Google Scholar 

  • Oyanagi A (1994) Gravitropic response growth angle and vertical distribution of roots of wheat (Triticum aestivum L.). Plant and Soil 165:323–326

    Article  CAS  Google Scholar 

  • Percival J (1921) The wheat plant: a monograph. Duckworth, London

  • Rahman H, et al (2005) Molecular characterisation and mapping of ALMT1, the aluminium tolerance gene in bread wheat (Triticum aestivum L.) Genome 48:781–791

    Google Scholar 

  • Rebetzke GJ, Richards RA (1999) Genetic improvement of early vigour in wheat. Aust J Agric Res 50:291–301

    Article  Google Scholar 

  • Rebetzke GJ, Richards RA, Fischer VM, Mickelson BJ (1999) Breeding long coleoptile, reduced height wheats. Euph 106:159–168

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2003) Genetic control of leaf conductance in three wheat crosses. Aust J Agric Res 54:381–387

    Article  Google Scholar 

  • Rebetzke GJ, Bruce SE, Kirkegaard JA (2005) Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant Soil 272:87–100

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Richards RA (2000) Gibberellic acid-sensitive dwarfing genes reduce plant height to increase seed number and grain yield of wheat. Aust J Agric Res 51: 235–245

    Article  CAS  Google Scholar 

  • Rengasamy P, Chittleboroough D, Helyar K (2003) Root-zone constraints and plant-based solutions for dryland salinity. Plant Soil 257: 249–260

    Article  CAS  Google Scholar 

  • Richards RA (1988) A tiller inhibitor gene in wheat and its effect on plant growth. Aust J Agric Res 39:749–757

    Article  Google Scholar 

  • Richards RA (1992) The effect of dwarfing genes in spring wheat in dry environments. II. Growth, water use and water use efficiency. Aust J Agric Res 43:529–539

    Article  Google Scholar 

  • Richards RA (2002) Current and emerging environmental challenges in Australian agriculture—the role of plant breeding. Aust J Agric Res 53:881–892

    Article  Google Scholar 

  • Richards RA, Lukacs Z (2002) Seedling vigour in wheat—sources of variation for genetic and agronomic improvement. Aust J Agric Res 53: 41–50

    Article  CAS  Google Scholar 

  • Richards RA, Passioura JB (1981) Seminal root morphology and water use of wheat II. Genetic variation. Crop Sci 21:253–255

    Article  Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  PubMed  Google Scholar 

  • Rosielle AA, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci 21:943–946

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Jones D (2001) Function and mechanism of organic acid exudation from roots. Annu Rev Plant Physiol Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust J Plant Phys 22:531–536

    Article  CAS  Google Scholar 

  • Sadras VO, Angus JF (2006) Benchmarking water-use efficiency of rainfed wheat in dry environments. Aust J Agric Res 57:1–10

    Article  Google Scholar 

  • Sasaki T, Yamamoto Y, Exaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AL, McIntyre CL, Thompson J, Seymour NP, Liu CJ (2005) Quantitative trait loci for root lesion nematode (Pratylenchus thornei) resistance in Middle-Easatern landraces and their potential for introgression into Australian Bread wheat. Aust J Agric Res 56:1059–1068

    Article  CAS  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Siddique KHM, Belford RK, Tennant D (1990) Root:shoot ratios of old and modern, tall and semi-dwarf wheats in a mediterranean environment. Plant Soil 121:89–98

    Article  Google Scholar 

  • Simpendorfer S, Kirkegaard JA, Heenan DP, Wong PTW (2001) Involvement of root inhibitory Pseudomonas spp. In the poor early growth of direct drilled wheat: studies in intact cores. Aust J Agric Res 52: 845–853

    Article  Google Scholar 

  • Stapper M, Harris HC (1989) Assessing the productivity of wheat genotypes in a Mediterranean climate using a crop-simulation model. Field Crops Res 20:129–152

    Article  Google Scholar 

  • Summerell BA, Burgess LW (1989) Decomposition and chemical composition of cereal straw. Soil Biol Biochem 21:551–559

    Article  Google Scholar 

  • Tennant D, Hall D (2001) Improving water use of annual crops and pastures—limitations and opportunities in Western Australia . Aust J Agric Res 52:171–182

    Article  Google Scholar 

  • Trethowan RM, Reynolds M, Sayre K, Ortiz-Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146: 405–413

    Article  Google Scholar 

  • Virgona JM, Gummer F, Angus JF (2006) Effects of grazing on wheat growth, yield, development, water use and nitrogen use. Aust J Agric Res (in press)

  • Watt M, Kirkegaard JA, Passioura JB (2006) Rhizosphere biology and crop productivity. Aust J Soil Res 44: 299–317

    Article  Google Scholar 

  • Watt M, Kirkegaard JA, Rebetzke GJ (2005) A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Func Plant Biol 32:695–706

    Article  Google Scholar 

  • Watt M, McCully ME, Kirkegaard JA (2003) Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat. Func Plant Biol 30:483–491

    Article  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T, 2000a Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium regidum) by the equal-compartment-agar method. Aust J Agric Res 51: 9377–944

    Google Scholar 

  • Wu H, Pratley J, Haig T, Lemerle D, An M (2000b) Allelochemicals in wheat (Triticum aestivum L.) : variation of phenolic acids in root tissues. J Agric Food Chem 48: 5321–5325

    Article  CAS  Google Scholar 

  • Zhu J, Lynch JP (2004) The contribution of lateral rooting to phosphorus acquisition effiency in maize (Zea mays) seedlings. Funct Plant Biol 31:949–958

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Richards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, R.A., Watt, M. & Rebetzke, G.J. Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154, 409–425 (2007). https://doi.org/10.1007/s10681-006-9286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9286-1

Keywords

Navigation