Skip to main content

Advertisement

Log in

Identification of γ-radiation-responsive microRNAs and their target genes in Tradescantia (BNL clone 4430)

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate gene expression at posttranscriptional level. They might regulate tolerance to abiotic stress. However, this has not been studied in Tradescantia (BNL clone 3340), an important bio-indicator for measuring the effect of radiation. Up to date, gamma irradiation (γ-IR) responsive miRNAs and their expressions patterns in plants in response to γ-IR stress have not been reported yet. Therefore, putative γ-IR responsive miRNAs from a cDNA library of Tradescantia after radiation stress were predicted in this study by using comprehensive genomic approaches. Here, we identified 37 miRNAs belonged to 36 different miRNA families. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis of five randomly selected miRNAs were confirmed that their responsiveness to γ-IR stress. Target prediction revealed that 37 miRNAs targeted 149 genes involved in stress tolerance regulation, light response, redox systems, signaling pathways, DNA repair, and transcription factors. A coordinated reverse expression changes between miRNAs and their target genes further validated that these predicted miRNAs could be γ-IR responsive and likely to be directly involved in stress regulatory networks of Tradescantia. Altogether, these results will provide novel insights to the understanding of molecular mechanisms of miRNAs involved in plant response to γ-IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armbruster U, Ruby Carrillo L, Venema K, Pavlovic L, Elisabeth Schmidtmann, Ari Kornfeld, Peter Jahns, Joseph A. Berry, David M. Kramer, Martin C. Jonikas (2014) Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat Commun 5: 5439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bej S, Basak J (2014) MicroRNAs: The Potential Biomarkers in Plant Stress Response. Am J Plant Sci 5:748–759

    Article  Google Scholar 

  • Bonin F, Molina M, Malet C, Ginestet C, Berthier-Vergnes O, Martin MT, Lamartine J (2009) GATA3 is a master regulator of the transcriptional response to low-dose ionizing radiation in human keratinocytes. BMC Genomics 10:417

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X (2004) A microrna as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung BY, Lee YB, Baek MH, Kim JH, Wi SG, Kima JS (2006) Effects of low-dose gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrorhizon S. Radiat Phys Chem 75:1018–1023

    Article  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39 (Web Server issue): W155–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Silva K, Laska B, Brown C, Sederoff HW, Khodakovskaya M (2011) Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. J Exp Bot 62:2679–2689

    Article  PubMed  Google Scholar 

  • Dezulian T, Palatnik JF, Huson D, Weige D (2005) Conservation and divergence of microRNA families in plants. Genome Biol 6:13–38

    Article  Google Scholar 

  • Dhandapani V, Ramchiary N, Paul P, Kim J, Choi SH, Lee J, Hur Y, Lim YP (2011) Identification of Potential microRNAs and Their Targets in Brassica rapa L. Mol Cells 32:1–37

    Article  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, Claeys H, van Vlierberghe K, Matsui M, Inzé D (2015) The ethylene response factors ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol 169:166–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Xie K, Xiong L (2014) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Bot 65:2119–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felice KM, Salzman DW, Shubert-Coleman J, Jensen KP, Furneaux HM (2009) The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to Argonaute2. Biochem J 422:329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald JE, Wollner SB, Adalja AA, Morhard RC, Cero AJ, Inglesby TV (2012) After Fukushima: Managing the Consequences of a Radiological Release (Final Report) Baltimore, MD: Center for Biosecurity of University of Pittsburgh Medical Center.

    Google Scholar 

  • Foyer CH, Decourvieres P, Kunerk KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Goodman CD, Casati P, Walbot V (2004) A multidrug resistanceassociated protein involved in anthocyanin transport in Zea mays. Plant Cell 16:1812–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi G, Shibato J, Imanaka T, Cho K, Kubo A, Kikuchi S, Satoh K, Kimura S, Ozawa S, Fukutani S, Endo S, Ichikawa K, Agrawal GK, Shioda S, Fukumoto M, Rakwal R (2014) Unraveling lowlevel gamma radiation-responsive changes in expression of early and late genes in leaves of rice seedlings at Iitate Village, Fukushima. J Hered 105:7237–7238

    Article  Google Scholar 

  • Hwang JE, Hwang SG, Kim SH, Lee KJ, Jang CS, Kim JB, Kim SH, Ha BK, Ahn JW, Kang SY, Kim DS (2013) Transcriptome profiling in response to different types of ionizing radiation and identification of multiple radio marker genes in rice. Physiol Plant 150:604–619

    Article  PubMed  Google Scholar 

  • ICRP (1990) Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann ICRP 21:1–3

    Google Scholar 

  • Jan S, Parween T, Siddiqi TO, Mahmooduzzafar X (2012) Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products. Environ Rev 20:17–39

    Article  CAS  Google Scholar 

  • Jia X, Ren L, Chen QJ, Li R, Tang G (2009) UV-B-responsive microRNAs in Populus tremula. J Plant Physiol 166:2046–2057

    Article  CAS  PubMed  Google Scholar 

  • Jian X, Zhang L, Li G, Zhang L, Wang X, Cao X, Fang X, Chen F (2010) Identification of novel stress-regulated microRNAs from Oryza sativa L. Genomics 95:47–55

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–99

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    Article  CAS  PubMed  Google Scholar 

  • Keryer E, Collin V, Lavergne D, Lemaire S, Issakidis-Bourguet E (2004) Characterization of Arabidopsis Mutants for the Variable Subunit of Ferredoxin:thioredoxin Reductase*. Photosynth Res 79:265–274

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428:81–84

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O (2008) Transgenic Plants as Sensors of Environmental Pollution Genotoxicity. Sensors (Basel) 8:1539–1558

    Article  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom, KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Duan H, Li J, Deng XW, Yin W, Xia X (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539

    Article  CAS  PubMed  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Kumari S, Zhang L, Zheng Y, Ware D (2012) Characterization of miRNAs in Response to Short-Term Waterlogging in Three Inbred Lines of Zea mays. PLoS ONE 7:e39786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, and Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scare crow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Tuteja N (2013) Different expression of miRNAs targeting helicases in rice in response to low and high dose rate γ-ray treatments. Plant Signal Behav 8:e25128-1–e25128-11. doi: 10.4161/psb.25128

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci 3:32–36

    Article  Google Scholar 

  • Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2010) Hypoxia-responsive microRNAs and transacting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zincfinger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101:6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology 30:865–873

    Article  CAS  Google Scholar 

  • Panda D, Dehury B, Sahu J, Barooah ZM, Sen P, Modi MK (2015) Computational identification and characterization of conserved miRNAs and their target genes in garlic (Allium sativum L.) expressed sequence tags. Gene 537:333–342

    Article  Google Scholar 

  • Park S, Moon JC, Park YC, Kim JH, Kim DS, Jang CS (2014) Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. J Plant Physiol 171:1645–1653

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tissue Organ Cult 105:233–242

    Article  CAS  Google Scholar 

  • Poudel S, Aryal N, Lu C (2015) Identification of MicroRNAs and transcript targets in Camelina sativa by deep sequencing and computational methods. PLoS One 10:e0121542

    Article  PubMed  PubMed Central  Google Scholar 

  • Quah S, Hui JHL, Holland PWH (2015) A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths. Mol Biol Evol 32:1161–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayaershizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Fang J, Li X, Liu H, Chao CT (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subburaj S, Kim AY, Lee S, Kim KN, Suh MC, Kim GJ, Lee GJ (2016) Identification of novel stress-induced microRNAs and their targets in Camelina sativa using computational approach. Plant Biotechnol Rep 10:155–169

    Article  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Singh K, Pareek A, Singla-Pareek SL (2015) Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC Plant Biol 15:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanri O, Murray J, Andraiankaja A, Zhang YJ, Benedito V, Hofer JMI, Cheng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AK (1981) Commelinaceae–A review of the distribution, biology and control of the important weeds belonging to this family. Trop Pest Manag 27:405–418

    Article  Google Scholar 

  • Xie F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232:417–434

    Article  CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cisacting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Zaichkina SI, Rozanova OM, Aptikaeva GF, Achmadieva ACh, and Klokov DY (2004) Low Doses of Gamma-Radiation Induce Nonlinear Dose Responses in Mammalian and Plant Cells. Nonlinearity Biol Toxicol Med 2:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006a) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Stellwag EJ (2008a) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb GP, Anderson TA. (2007). Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang L, Xia C, Zhao G, Liu J, Jia J, Kong X (2015) A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol Plant. 153:538–554

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu W, Li Z, Deng XW, Wu W, Xue Y (2008b) F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol 148:2121–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–813

    Article  CAS  PubMed  Google Scholar 

  • Zhang, BH, Pan XP, Anderson TA (2006b) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, et al. (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Ruan J, Wang G, Zhang W (2007a) Characterization and identification of miRNA core promoters in four model species. PLoS Comput Biol 3:412–423

    Article  CAS  Google Scholar 

  • Zhou X, Wang G and Zhang W (2007b) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 3:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542

    Article  CAS  PubMed  Google Scholar 

  • Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geung-Joo Lee.

Additional information

Contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subburaj, S., Ha, HJ., Jin, YT. et al. Identification of γ-radiation-responsive microRNAs and their target genes in Tradescantia (BNL clone 4430). J. Plant Biol. 60, 116–128 (2017). https://doi.org/10.1007/s12374-016-0433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0433-5

Keywords

Navigation