Skip to main content
Log in

RNA Interference-Based Transgenic Maize Resistant to Maize Dwarf Mosaic Virus

  • Original Research
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Maize dwarf mosaic virus (MDMV) is a widespread pathogenic virus that causes serious loss of yield in maize (Zea mays). RNA interference (RNAi) triggered by hairpin RNA (hpRNA) transcribed from a transgenic inverted-repeat sequence is an effective way to defend against viruses in plants. In this study, an hpRNA expression vector containing a sense arm and an antisense arm of 150 bp separated by an intron of the maize actin gene was constructed to target the P1 protein (protease) gene of MDMV and used to transform Agrobacterium tumefaciens strain EHA105. The transformed Agrobacterium strain was used to transform maize embryonic calli isolated from immature embryos by an improved culture technique. In all, 46 plants were regenerated after stringent hygromycin B selection, and 18 of them were certified to be positive by PCR amplification. Of these positive plants, 13 were grown to produce offspring, and nine were identified by Southern blotting to have the transgene integrated with one or two copies. The resistance of three T2 lines was evaluated in a field trial of dual MDMV inoculation in two environments and was found to be improved compared with the non-transformed control. The disease indexes of the transgenic plant lines h2, 13, and h1 were not significantly different from the highly resistant control line H9-21. The viral titers of the inoculated plants were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), and the result was in accord with the resistance evaluated in the field trial. The addition of uniconazole S3307 (0.25 mg l−1) and ABT root-promoting powder (0.5 mg l−1) showed a significant improvement of hardening in regenerated plantlets, which were stronger and generated a better fibrous root system than the control. This improvement could facilitate the transgenic operation of maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IgG:

Immunoglobulin G

T-DNA:

Transfer DNA

References

  • Abhary MK, Anfoka GH, Nakhla MK, Maxwell DP (2006) Post-transcriptional gene silencing in controlling viruses of the tomato yellow leaf curl virus complex. Arch Virol 151:2349–2363

    Article  CAS  PubMed  Google Scholar 

  • Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev 227:176–188

    Article  CAS  PubMed  Google Scholar 

  • Azhakanandam K, Mccabe MS, Power JB, Lowe KC, Cocking EC, Davey MR (2000) T-DNA transfer, integration, expression and inheritance in rice: effects of plant genotype and Agrobacterium super-virulence. J Plant Physiol 157:429–439

    CAS  Google Scholar 

  • Bai YF, Zhao JF, Zheng J, Zhang JP, Wang MY, Gou MY, Dong ZG, Yang HC, Wang GY (2006) SCMV-resistant transgenic maize mediated by antisense cp gene. Acta Agron Sin 32:661–665

    CAS  Google Scholar 

  • Bai YF, Yang HC, Qu L, Zheng J, Zhang JP, Wang MY, Xie W, Zhou XM, Wang GY (2008) Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus. Front Agric China 2:125–130

    Article  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    Article  CAS  PubMed  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EO, Mendes EA, Aragao FJ (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microb Interact 20:717–726

    Article  CAS  Google Scholar 

  • Chen YK, Lohuis D, Goldbach R, Prins M (2004) High frequency induction of RNA-mediated resistance against cucumber mosaic virus using inverted repeat constructs. Mol Breed 14:215–226

    Article  Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    Article  CAS  PubMed  Google Scholar 

  • Clarke JL, Spetz C, Haugslien S, Xing SC, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to poinsettia mosaic virus. Plant Cell Rep 27:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Cronin S, Verchot J, Haldemancahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor, a transport function of the potyvirus helper component proteinase. Plant Cell 7:549–559

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta I, Malasi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354

    CAS  Google Scholar 

  • Davis TD, Steffens GL, Sankhla N (1988) Triazole plant growth regulators. Hort Rev 10:63–105

    CAS  Google Scholar 

  • Deroles SC, Gardner RC (1988) Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol 11:365–377

    Article  CAS  Google Scholar 

  • Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V (2005) Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res 14:989–994

    Article  PubMed  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  Google Scholar 

  • Fletcher RA, Hofstra G (1990) Improvement of uniconazole-induced protection in wheat seedlings. J Plant Growth Regul 9:207–212

    Article  CAS  Google Scholar 

  • Fletcher RA, Gilly A, Sankhla N, Davis TD (2001) Triazoles as plant growth regulators and stress protectants. Hortic Rev 24:55–138

    Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhan Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton D, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  CAS  PubMed  Google Scholar 

  • Fu FL, Li WC, Rong TZ (2005) Effect of Ca2+ and uniconazole appended in N6 medium on immature embryos culture in maize. Acta Agron Sin 31:634–639

    CAS  Google Scholar 

  • Fusaro AF, Mtthew L, Simth NA, Curtin SJ, Hagan JD, Ellacott GA, Watson JM, Wang MB, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621

    Article  CAS  PubMed  Google Scholar 

  • Jiang JX, Zhou XP (2002) Maize dwarf mosaic disease in different regions of China is caused by sugarcane mosaic virus. Arch Virol 147:2437–2443

    Article  CAS  PubMed  Google Scholar 

  • Khalil IA, Rahman H (1995) Effects of paclobutrazol on growth, chloroplast pigments and sterol biosynthesis of maize (Zea mays L.). Plant Sci 105:15–21

    Article  CAS  Google Scholar 

  • Kubota K, Tsuda S, Tamai A, Meshi T (2003) Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 77:11016–11026

    Article  CAS  PubMed  Google Scholar 

  • Kuntze L, Fuchs E, Grutzig M, Schulz B, Henning U, Hohmann F, Melchinger AE (1995) Evaluation of maize inbred lines for resistance to sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV). Agronomie 15:463–467

    Article  Google Scholar 

  • Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15:139–143

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang X, Zhou G (2007) Analyses of maize embryo invasion by Sugarcane mosaic virus. Plant Sci 172:131–138

    Article  CAS  Google Scholar 

  • Lin K (1989) Studies on the resistance of corn inbred lines and hybrids to maize dwarf mosaic virus strain B. Sci Agric Sin 22:57–61

    Google Scholar 

  • Liu X, Tan Z, Li W, Zhang H, He D (2009) Cloning and transformation of SCMV CP gene and regeneration of transgenic maize plants showing resistance to SCMV strain MDB. Afr J Biotechnol 8:3747–3753

    CAS  Google Scholar 

  • Louie R (1986) Effects of genotype and inoculation protocols on resistance evaluation of maize to maize dwarf mosaic virus strains. Phytopathology 76:769–773

    Article  Google Scholar 

  • Love AJ, Laird J, Holt J, Hamilton AJ, Sadanandom A, Milner JJ (2007) Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J Gen Virol 88:3439–3444

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Stubbs G, Culver JN (1998) Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection. Virology 248:188–198

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Ely L, Smith TH, Marathe R, Anandalakshmi R, Fagard M, Vaucheret H, Pruss GJ, Bowman L, Vance VB (2001) HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13:571–583

    Article  CAS  PubMed  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    Article  CAS  Google Scholar 

  • Mizutani M (2006) A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Biosci Biotechnol Biochem 70:1731–1739

    Article  PubMed  Google Scholar 

  • Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5:71–82

    Article  CAS  PubMed  Google Scholar 

  • Morroni M, Thompson JR, Tepfer M (2008) Twenty years of transgenic plants resistant to cucumber mosaic virus. Mol Plant Microb Interact 21:675–684

    Article  CAS  Google Scholar 

  • Murry LE, Elliott LG, Capitant SA, West JA, Hanson KK, Scarafia L, Johnston S, DeLuca-Flaherty C, Nichols S, Cunanan D, Dietrich PS, Mettler IJ, Dewald S, Warnick DA, Rhodes C, Sinibaldi RM, Brunke KJ (1993) Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Biotechnology 11:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Negrete EA, Tripp JC, Bustamante RF (2009) RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol 83:1332–1340

    Article  Google Scholar 

  • Obbard DJ, Gordon KH, Buck AH, Jiggins F (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc B 364:99–115

    Article  CAS  Google Scholar 

  • Prins M, Goldbach R (1996) RNA-mediated virus resistance in transgenic plants. Arch Virol 141:2259–2276

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2007) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    Google Scholar 

  • Qu J, Ye J, Fang RX (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Ali I, Husnain T, Riazuddin S (2008) RNA interference: the story of gene silencing in plants and humans. Biotechnol Adv 26:202–209

    Article  Google Scholar 

  • Rai M, Datta K, Parkhi V, Tan J, Oliva N, Chawla HS, Datta SK (2007) Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice. Plant Cell Rep 26:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SV, Mishra AK, Praveen S (2007) Hairpin RNA mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17:251–257

    Article  CAS  PubMed  Google Scholar 

  • Redinbaugh MG, Jones MW, Gingery RE (2004) The genetics of virus resistance in maize (Zea mays.L). Maydica 47:183–190

    Google Scholar 

  • Ritzenthaler C (2005) Resistance to plant viruses: old issue, news answers? Curr Opin Biotechnol 16:118–122

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Okamoto M, Shinoda S, Kushiro T, Koshiba T, Kamiya Y, Hirai N, Todoroki Y, Sakata K, Nambara E, Mizutani M (2006) A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Biosci Biotechnol Biochem 70:1731–1739

    Article  CAS  PubMed  Google Scholar 

  • Savenkov EL, Valkonen JP (2002) Silencing of a viral RNA silencing suppressor in transgenic plants. J Gen Virol 83:2325–2335

    CAS  PubMed  Google Scholar 

  • Sidorov V, Duncan D (2009) Agrobacterium-mediated maize transformation: immature embryos versus callus. In: Paul Scott M (ed) Methods in molecular biology: transgenic maize. Humana, Totowa, pp 47–58

    Google Scholar 

  • Sun F, Xiang Y, Sanfacon H (2001) Homology-dependent resistance to tomato ringspot nepovirus in plants transformed with the VPg-protease coding region. Can J Plant Pathol 23:292–299

    Google Scholar 

  • Tang FD, Liang YJ, Han SJ, Gong WG, Ding BY (2004) Effect of biological agents on survival rate and root growth of Scots Pine seedlings. J Forest Res 15:124–126

    Article  Google Scholar 

  • Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I (2008) RNA-interference in rice against rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17:897–904

    Article  CAS  PubMed  Google Scholar 

  • Uzarowska A, Dionisio G, Sarholz B, Piepho HP, Xu ML, Ingvardsen CR, Wenzel1 G, Lubberstedt T (2009) Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC Plant Biol 9:1–15

    Article  Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants: defence and counterdefense. Science 292:2277–2280

    Article  CAS  PubMed  Google Scholar 

  • Vargas M, Martinez-Garcia B, Diaz-Ruiz JR, Tenllado F (2008) Transient expression of homologous hairpin RNA interferes with PVY transmission by aphids. J Virol 5:1–5

    Article  Google Scholar 

  • Wang MB, Metzlaff M (2005) RNA silencing and antiviral defense in plants. Curr Opin Plant Biol 8:216–222

    Article  PubMed  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Grhouse PM (2001) Construct design for efficient, effective and highthroughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Ding JQ, Du YX, Xu YB, Zhang XC (2007) Genetic analysis and molecular mapping of two dominant complementary genes determining resistance to sugarcane mosaic virus in maize. Euphytica 156:355–364

    Article  CAS  Google Scholar 

  • Xi ZY, Zhang SH, Li XH, Xie CX, Li MS, Hao CF, Zhang DG, Liang YH, Bai L, Zhang SH (2008) Identification and mapping of a novel sugarcane mosaic virus resistance gene in maize. Acta Agron Sin 34:1494–1499

    Article  CAS  Google Scholar 

  • Yin Z, Wang GL (2000) Evidence of multiple complex patterns of TDNA integration into the rice genome. Theor Appl Genet 100:461–470

    Article  CAS  Google Scholar 

  • Zhang Y, Wang J, Sui H, Gao B, Lv W, Zhang Y (1994) Effects of ABT root-promoting powder on the drought-resistance mechanism of maize under water stress. Acta Agric Boreali Sin 9:20–24

    Google Scholar 

  • Zhang MC, Duan LS, Tian XL, He ZP, Li JM, Wang BM, Li ZH (2007) Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol 164:709–717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key Science and Technology Special Project (2008ZX08003-004 and 2009ZX08003-012B) and technical support from all the staff members to this project are sincerely appreciated. The English writing has been revised by the International Science Editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Chen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZY., Fu, FL., Gou, L. et al. RNA Interference-Based Transgenic Maize Resistant to Maize Dwarf Mosaic Virus. J. Plant Biol. 53, 297–305 (2010). https://doi.org/10.1007/s12374-010-9117-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-010-9117-8

Keywords

Navigation