Skip to main content
Log in

Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Transgenics for the expression of β-carotene biosynthetic pathway in the endosperm were developed in indica rice background by introducing phytoene synthase (psy) and phytoene desaturase (crtI) genes through Agrobacterium-mediated transformation, employing non-antibiotic positive selectable marker phosphomannose isomerase (pmi). Twenty-seven transgenic lines were characterized for the structural organization of T-DNA inserts and the expression of transgenes in terms of total carotenoid and β-carotene accumulation in the endosperm. Ten lines were also studied for the inheritance of transgenic loci to the T1 progenies. Copy number and sites of integration of the transgenes ranged from one to four. Almost 50% of the transgenic lines showed rearrangement of T-DNA inserts. However, most of the rearrangements occurred in the crtI expression cassette which is adjacent to the right T-DNA border. Differences in copy numbers of psy and crtI were also observed indicating partial T-DNA integration. Beyond T-DNA border transfer was also detected in 25% of the lines. Fifty percent of the lines studied showed single Mendelian locus inheritance, while two lines showed bi-locus inheritance in the T1 progenies. Some of the lines segregating in 3:1 ratio showed two sites of integration on restriction digestion analysis indicating that the T-DNA insertion sites were tightly linked. Three transgenic lines showed nonparental types in the segregating progenies, indicating unstable transgenic locus. Evidences from the HPLC analysis showed that multiple copies of transgenes had a cumulative effect on the accumulation of carotenoid in the endosperm. T1 progenies, in general, accumulated more carotenoids than their respective parents, the highest being 6.77 μg/g of polished seeds. High variation in the carotenoid accumulation was observed within the T1 progenies which could be attributed to the variation in the structural organization and expression of transgenes, minor variations in the genetic background within the progeny plants, or differences in the plant microenvironments. The study identified lines worthy of further multiplication and breeding based on transgene structural integrity in the segregating progeny and high expression levels in terms of the β-carotene accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afolabi AS, Worland B, Snape JW, Vain P (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet 109:815–826

    Article  PubMed  CAS  Google Scholar 

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumifaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617

    Article  CAS  Google Scholar 

  • Azhakanandam K, Mccabe MS, Power JB, Lowe KC, Cocking EC, Davey MR (2000) T-DNA transfer, integration, expression and inheritance in rice: effects of plant genotype and Agrobacterium super-virulence. J Plant Physiol 157:429–439

    CAS  Google Scholar 

  • Baisakh N, Datta K, Oliva N, Ona I, Rao GJN, Mew TW, Datta SK (2001) Rapid development of homozygous transgenic rice using anther culture harboring rice chitinase gene for enhanced sheath blight resistance. Plant Biotechnol 18:101–108

    Article  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironoka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumifaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Christou P, Twyman RM, Fu X, Wegel E, Kohli A, Stoger E (2001) Transgene integration, organization and expression in cereals. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV. Proceedings of 4th international rice genetics symposium, 22–27 October 2000. IRRI, Philippines, pp 449–464

  • Datta K, Oliva N, Torrizo L, Abrigo E, Khush GS, Datta SK (1996) Genetic transformation of indica and japonica rice by Agrobacterium tumifaciens. Rice Genet Newsl 13:136–139

    Google Scholar 

  • Datta SK, Torrizo LB, Tu J Oliva NP, Datta K (1997) Production and molecular evaluation of transgenic rice plants. IRRI Discuss Pap Ser 21:1–42

    Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Rai M, Rehana S, Al-Babili S, Beyer P, Potrykus I, Datta SK (2003) Bioengineered ‘golden’ indica rice cultivars with β-carotene accumulation in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Rai M, Parkhi V, Oliva N, Tan J, Datta SK (2006) Improved ‘golden’ indica rice and post-transgeneration of metabolic target products of carotenoids (β-carotene) in transgenic elite cultivars (IR64 and BR29). Curr Sci 71:935–939

    Google Scholar 

  • De Neve M, De Buck S, Jacobs A (1997) T-DNA integration patterns in co-transformed plant cells suggests that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29

    Article  PubMed  Google Scholar 

  • Debuck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304

    CAS  Google Scholar 

  • Deroles SC, Gardner RC (1988) Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol 11:365–377

    Article  CAS  Google Scholar 

  • Dong JJ, Kharb P, Teng WM, Hall TC (2001) Characterization of rice transformed via Agrobacterium-mediated inflorescence approach. Mol Breed 7:187–194

    Article  CAS  Google Scholar 

  • Elmayan T, Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J 9:787–797

    Article  CAS  Google Scholar 

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hoa TT, Al-Babili S, Schaub P, Potrykus I, Beyer P (2003) Golden indica and japonica rice lines amenable to deregulation. Plant Physiol 133:161–169

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene tobacco transformants. Plant Mol Biol 15:851–864

    Article  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Zhang P, Chen WP, Phillips RL, Friebe B, Muthukrishnan S, Gill BS (2001) High resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62

    Article  CAS  Google Scholar 

  • Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Leech MJ, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot-spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Gahakwa D, Vain P, Laurie DA, Christou P (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208:88–97

    Article  CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches RW, Wegel E, Stoger E, Christou P (2003) Transgene integration organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector “backbone” sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2000) Transgene repeats in aspen: molecular characterization suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome. Mol Gen Genet 264:20–28

    Article  PubMed  CAS  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    Article  PubMed  CAS  Google Scholar 

  • Martineau B, Voelker TA, Sanders RA (1994) On defining T-DNA. Plant Cell 6:1032–1033

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8:833–840

    Article  Google Scholar 

  • Offringa R, deGroot MJA, Haagsman HJ, Does MP, Vandenelzen PJM, Hooykaas PJJ (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9:3077–3084

    PubMed  CAS  Google Scholar 

  • Paine JA, Shipton CA, Sunandha C, Howells RM, Kennedy MJ, Vermon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  PubMed  CAS  Google Scholar 

  • Parkhi V, Rai M, Tan J, Oliva N, Rehana S, Bandopadhyay A, Torrizo L, Ghole V, Datta K, Datta SK (2005) Molecular characterization of marker-free transgenic lines of indica rice that accumulate β-carotene in the endosperm. Mol Gen Genomics 274:325–336

    Article  CAS  Google Scholar 

  • Pawlowski WP, Somers DA (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA 95:12106–12110

    Article  PubMed  CAS  Google Scholar 

  • Peterhans A, Schlupmann H, Basse C, Paszkowski J (1990) Intrachromosomal recombination in plants. EMBO J 9:3437–3445

    PubMed  CAS  Google Scholar 

  • Puchta H, Kocher S, Hohn B (1992) Extrachromosomal homologous DNA recombination in plant-cells is fast and is not affected by CpG methylation. Mol Cell Biol 12:3372–3379

    PubMed  CAS  Google Scholar 

  • Ramanathan V, Veluthambi K (1995) Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of TL-DNA. Plant Mol Biol 28:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Reineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). BioTechnol 8:33–38

    Article  Google Scholar 

  • Rodriguez-Amaya DB (2001) A guide to carotenoid analysis in foods. ILSI Press, International Life Science Institute, Washington DC, p 64

  • Romano E, Soares A, Proite K, Neiva S, Grossi M, Faria JC, Rech EL, Aragao FJL (2005) Transgene elimination in genetically modified dry bean and soybean lines. Genet Mol Res 4:177–184

    PubMed  CAS  Google Scholar 

  • Sallaud C, Meynard D, Van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PBF, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants in rice (Oriza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Stoger E, Williams S, Keen D, Christou P (1998) Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Res 7:463–471

    Article  CAS  Google Scholar 

  • Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Baisakh N, Oliva N, Parkhi V, Rai M, Torrizo L, Datta K, Datta SK (2005) The screening of rice germplasm, including those transgenic rice lines which accumulate β-carotene in their polished seeds, for their carotenoid profile. Int J Food Sci Tech 40:1–7

    Article  CAS  Google Scholar 

  • Tingay S, McEllroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens- mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Vain P, Afolabi AS, Worland B, Snape JW (2003) Transgene behaviour in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup. Theor Appl Genet 107:210–217

    Article  PubMed  CAS  Google Scholar 

  • van der Graff E, den Dulk-Ras A, Hooykas PJJ (1996) deviating T-DNA transfer from Agrobacterium tumefaciens to plants. Plant Mol Biol 31:677–681

    Article  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    Article  PubMed  CAS  Google Scholar 

  • Veluthambi K, Gupta AK, Sharma A (2003) The current status of plant transformation technologies. Curr Sci 84:368–380

    CAS  Google Scholar 

  • Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Wang GL (2000) Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet 100:461–470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from USAID and HarvestPlus is acknowledged. Thanks are due to Syngenta for an international collaborative programme. We thank Dr. Peter Beyer for providing the pCaCar plasmid. The authors are grateful to Ms. Lina Torrizo for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Rai.

Additional information

Communicated by H. Ebinuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, M., Datta, K., Parkhi, V. et al. Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice. Plant Cell Rep 26, 1221–1231 (2007). https://doi.org/10.1007/s00299-007-0333-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0333-8

Keywords

Navigation