Skip to main content

Advertisement

Log in

Short-term repeatability of myocardial blood flow using 82Rb PET/CT: The effect of arterial input function position and motion correction

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

We tested the repeatability of myocardial blood flow (MBF) quantified using 82Rb with and without motion correction (MC) and with arterial input functions estimated from left ventricle (LV) and atrium (LA).

Methods

Twenty-one patients referred for clinical 82Rb PET/CT underwent repeated rest scans in a single imaging session. Global MBF was quantified using three different assessments by two operators: (1) automatic processing without MC and LV arterial input function (AIF), (2) with MC and LV-AIF, and (3) with MC and LA-AIF. Inter-scan and inter-operator repeatability were tested using coefficient of variation (CV).

Results

MC with LV-AIF did not change MBF (no MC: 1.01 ± 0.30 mL/min/g vs MC with LV-AIF: 1.01 ± 0.29, P = 0.70), whereas MC with LA-AIF showed significantly lower MBF assessments (0.95 ± 0.28 mL/min/g, P = 0.0006). We report significant improvement for test-retest reproducibility for global MBF following MC (CV; No MC: 16.0, MC (LV-AIF): 9.2, MC (LA-AIF): 8.8). Good inter-operator repeatability was observed for LV-AIF (CV = 4.7) and LA-AIF (CV = 5.6) for global MBF assessments.

Conclusions

MC significantly improved the test-retest repeatability between operators and between scans. MBF obtained after MC with LV-AIF were comparable, whereas MBFs after MC and LA-AIF were significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AIF:

Arterial input function

CAD:

Coronary artery disease

LA:

Left atrium

LV:

Left ventricle

MBF:

Myocardial blood flow

ROI:

Region of interest

RPC:

Repeatability coefficient

82Rb:

Rubidium-82

References

  1. Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med 2018;59:273-93.

    Article  CAS  Google Scholar 

  2. Yoshinaga K, Manabe O, Tamaki N. Absolute quantification of myocardial blood flow. J Nucl Cardiol 2018;25:635-51.

    Article  Google Scholar 

  3. Naya M, Murthy VL, Foster CR, Gaber M, Klein J, Hainer J, et al. Prognostic interplay of coronary artery calcification and underlying vascular dysfunction in patients with suspected coronary artery disease. J Am Coll Cardiol 2013;61:2098-106.

    Article  CAS  Google Scholar 

  4. Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging 2015;16:900-9.

    Article  Google Scholar 

  5. Taqueti VR, Everett BM, Murthy VL, Gaber M, Foster CR, Hainer J, et al. Interaction of impaired coronary flow reserve and cardiomyocyte injury on adverse cardiovascular outcomes in patients without overt coronary artery disease. Circulation 2015;131:528-35.

    Article  CAS  Google Scholar 

  6. Cho SG, Lee SJ, Na MH, Choi YY, Bom HH. Comparison of diagnostic accuracy of PET-derived myocardial blood flow parameters: A meta-analysis. J Nucl Cardiol 2018. https://doi.org/10.1007/s12350-018-01476-z.

    Article  PubMed  Google Scholar 

  7. Vasquez AF, Johnson NP, Gould KL. Variation in quantitative myocardial perfusion due to arterial input selection. JACC Cardiovasc Imaging 2013;6:559-68.

    Article  Google Scholar 

  8. Lee BC, Moody JB, Poitrasson-Riviere A, Melvin AC, Weinberg RL, Corbett JR, et al. Blood pool and tissue phase patient motion effects on (82)rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2018. https://doi.org/10.1007/s12350-018-1256-1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Slomka PJ, Diaz-Zamudio M, Dey D, Motwani M, Brodov Y, Choi D, et al. Automatic registration of misaligned CT attenuation correction maps in Rb-82 PET/CT improves detection of angiographically significant coronary artery disease. J Nucl Cardiol 2015;22:1285-95.

    Article  Google Scholar 

  10. Brodov Y, Gransar H, Dey D, Shalev A, Germano G, Friedman JD, et al. Combined quantitative assessment of myocardial perfusion and coronary artery calcium score by hybrid 82Rb PET/CT improves detection of coronary artery disease. J Nucl Med 2015;56:1345-50.

    Article  CAS  Google Scholar 

  11. Dekemp RA, Declerck J, Klein R, Pan XB, Nakazato R, Tonge C, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med 2013;54:571-7.

    Article  CAS  Google Scholar 

  12. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47.

    CAS  PubMed  Google Scholar 

  13. Nakazato R, Berman DS, Dey D, Le Meunier L, Hayes SW, Fermin JS, et al. Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: normal limits and correlation with invasive coronary angiography. J Nucl Cardiol 2012;19:265-76.

    Article  Google Scholar 

  14. Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.

    Article  Google Scholar 

  15. Hyslop NP, White WH. Estimating precision using duplicate measurements. J Air Waste Manag Assoc 2009;59:1032-9.

    Article  Google Scholar 

  16. Piccinelli M, Votaw JR, Garcia EV. Motion correction and its impact on absolute myocardial blood flow measures with PET. Curr Cardiol Rep 2018;20:34.

    Article  Google Scholar 

  17. Koenders SS, van Dijk JD, Jager PL, Ottervanger JP, Slump CH, van Dalen JA. Impact of regadenoson-induced myocardial creep on dynamic Rubidium-82 PET myocardial blood flow quantification. J Nucl Cardiol 2019;26:719-28.

    Article  CAS  Google Scholar 

  18. Efseaff M, Klein R, Ziadi MC, Beanlands RS, deKemp RA. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. J Nucl Cardiol 2012;19:997-1006.

    Article  Google Scholar 

  19. Hove JD, Iida H, Kofoed KF, Freiberg J, Holm S, Kelbaek H. Left atrial versus left ventricular input function for quantification of the myocardial blood flow with nitrogen-13 ammonia and positron emission tomography. Eur J Nucl Med Mol Imaging 2004;31:71-6.

    Article  Google Scholar 

Download references

Disclosure

D. S. Berman and P. J. Slomka receive software royalties from QPS software at Cedars-Sinai Medical Center. Y. Otaki, M. L. Lassen, O. Manabe, E. Eisenberg, H. Gransar, F. Wang, Y. J. Lee, and E. Tzoloz declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr J. Slomka PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8316 kb)

Supplementary material 2 (PPTX 822 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otaki, Y., Lassen, M.L., Manabe, O. et al. Short-term repeatability of myocardial blood flow using 82Rb PET/CT: The effect of arterial input function position and motion correction. J. Nucl. Cardiol. 28, 1718–1725 (2021). https://doi.org/10.1007/s12350-019-01888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01888-5

Keywords

Navigation