Skip to main content

Advertisement

Log in

Automated dynamic motion correction using normalized gradient fields for 82rubidium PET myocardial blood flow quantification

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Patient motion can lead to misalignment of left ventricular (LV) volumes-of-interest (VOIs) and subsequently inaccurate quantification of myocardial blood flow (MBF) and flow reserve (MFR) from dynamic PET myocardial perfusion images. We aimed to develop an image-based 3D-automated motion-correction algorithm that corrects the full dynamic sequence for translational motion, especially in the early blood phase frames (~ first minute) where the injected tracer activity is transitioning from the blood pool to the myocardium and where conventional image registration algorithms have had limited success.

Methods

We studied 225 consecutive patients who underwent dynamic rest/stress rubidium-82 chloride (82Rb) PET imaging. Dynamic image series consisting of 30 frames were reconstructed with frame durations ranging from 5 to 80 seconds. An automated algorithm localized the RV and LV blood pools in space and time and then registered each frame to a tissue reference image volume using normalized gradient fields with a modification of a signed distance function. The computed shifts and their global and regional flow estimates were compared to those of reference shifts that were assessed by three physician readers.

Results

The automated motion-correction shifts were within 5 mm of the manual motion-correction shifts across the entire sequence. The automated and manual motion-correction global MBF values had excellent linear agreement (R = 0.99, y = 0.97x + 0.06). Uncorrected flows outside of the limits of agreement with the manual motion-corrected flows were brought into agreement in 90% of the cases for global MBF and in 87% of the cases for global MFR. The limits of agreement for stress MBF were also reduced twofold globally and by fourfold in the RCA territory.

Conclusions

An image-based, automated motion-correction algorithm for dynamic PET across the entire dynamic sequence using normalized gradient fields matched the results of manual motion correction in reducing bias and variance in MBF and MFR, particularly in the RCA territory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

PET:

Positron emission tomography

LVBP:

Left ventricular blood pool

RVBP:

Right ventricular blood pool

VOI:

Volume-of-interest

TAC:

Time-activity curve

HLA:

Horizontal long-axis

NGF:

Normalized gradient field

LAD:

Left anterior descending artery

LCX:

Left circumflex

RCA:

Right coronary artery

References

  1. Danad I, Raijmakers PG, Driessen RS, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol 2017;2:1100. https://doi.org/10.1001/jamacardio.2017.2471.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Naya M, Murthy VL, Taqueti VR, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med 2014;55:248-55. https://doi.org/10.2967/jnumed.113.121442.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ziadi MC, deKemp RA, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80. https://doi.org/10.1007/s12350-011-9506-5.

    Article  PubMed  Google Scholar 

  4. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-24. https://doi.org/10.1161/CIRCULATIONAHA.111.050427.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ziadi MC, deKemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8. https://doi.org/10.1016/j.jacc.2011.01.065.

    Article  PubMed  Google Scholar 

  6. Lee BC, Moody JB, Poitrasson-Rivière A, et al. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2018. https://doi.org/10.1007/s12350-018-1256-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pan X-B, Declerck J, Burckhardt DD. Cardiac positron emission tomography: overview of myocardial perfusion, myocardial blood flow and myocardial flow reserve imaging. Knoxville, TN: Siemens; 2011.

    Google Scholar 

  8. Klein R, Ocneanu A, deKemp RA. Time-frame sampling for 82Rb PET flow quantification: towards standardization of clinical protocols. J Nucl Cardiol 2017;24:1530-4. https://doi.org/10.1007/s12350-017-0981-1.

    Article  PubMed  Google Scholar 

  9. Rubeaux M, Doris MK, Alessio A, Slomka PJ. Enhancing cardiac PET by motion correction techniques. Curr Cardiol Rep 2017. https://doi.org/10.1007/s11886-017-0825-2.

    Article  PubMed  Google Scholar 

  10. Koshino K, Watabe H, Enmi J, et al. Effects of patient movement on measurements of myocardial blood flow and viability in resting 15O-water PET studies. J Nucl Cardiol 2012;19:524-33. https://doi.org/10.1007/s12350-012-9522-0.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lamare F, Le Maitre A, Dawood M, et al. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging: motion correction strategies in dual gated cardiac. Med Phys 2014;41:072504. https://doi.org/10.1118/1.4881099.

    Article  CAS  PubMed  Google Scholar 

  12. Yu Y, Chan C, Ma T, et al. Event-by-event continuous respiratory motion correction for dynamic PET imaging. J Nucl Med 2016;57:1084-90. https://doi.org/10.2967/jnumed.115.167676.

    Article  CAS  PubMed  Google Scholar 

  13. Küstner T, Schwartz M, Martirosian P, et al. MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal 2017;42:129-44. https://doi.org/10.1016/j.media.2017.08.002.

    Article  PubMed  Google Scholar 

  14. Chun SY, Reese TG, Ouyang J, et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med 2012;53:1284-91. https://doi.org/10.2967/jnumed.111.092353.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hunter CRRN, Klein R, Beanlands RS, deKemp RA. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging: patient motion effects on regional myocardial blood flow. Med Phys 2016;43:1829-40. https://doi.org/10.1118/1.4943565.

    Article  PubMed  Google Scholar 

  16. Kesner AL, Schleyer PJ, Büther F, et al. On transcending the impasse of respiratory motion correction applications in routine clinical imaging—a consideration of a fully automated data driven motion control framework. EJNMMI Phys 2014;1:8. https://doi.org/10.1186/2197-7364-1-8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Woo J, Tamarappoo B, Dey D, et al. Automatic 3D registration of dynamic stress and rest 82 Rb and flurpiridaz F 18 myocardial perfusion PET data for patient motion detection and correction: automated PET motion correction. Med Phys 2011;38:6313-26. https://doi.org/10.1118/1.3656951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turkington TG, DeGrado TR, Hanson MW, Coleman RE. Alignment of dynamic cardiac PET images for correction of motion. IEEE Trans Nucl Sci 1997;44:235-42. https://doi.org/10.1109/23.568814.

    Article  Google Scholar 

  19. Haber E, Modersitzki J. Intensity gradient based registration and fusion of multi-modal images. Methods Inf Med 2007;46:292-9. https://doi.org/10.1160/ME9046.

    Article  PubMed  Google Scholar 

  20. Murthy VL, Bateman TM, Beanlands RS, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Med 2017. https://doi.org/10.2967/jnumed.117.201368.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Efseaff M, Klein R, Ziadi MC, et al. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. J Nucl Cardiol 2012;19:997-1006.

    Article  Google Scholar 

  22. Ficaro E, Lee B, Kritzman J, Corbett J. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455-65. https://doi.org/10.1016/j.nuclcard.2007.06.006.

    Article  PubMed  Google Scholar 

  23. Lee BC, Moody JB, Weinberg RL, et al. Optimization of temporal sampling for 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2017;24:1517-29. https://doi.org/10.1007/s12350-017-0899-7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hodneland E, Lundervold A, Rørvik J, Munthe-Kaas AZ. Normalized gradient fields for nonlinear motion correction of DCE-MRI time series. Comput Med Imaging Graph Off J Comput Med Imaging Soc 2014;38:202-10. https://doi.org/10.1016/j.compmedimag.2013.12.007.

    Article  Google Scholar 

  25. Lortie M, Beanlands RSB, Yoshinaga K, et al. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.

    Article  Google Scholar 

  26. Wilcox R. Comparing the variances of two dependent variables. J Stat Distrib Appl 2015. https://doi.org/10.1186/s40488-015-0030-z.

    Article  Google Scholar 

  27. Viola P, Wells WM III. Alignment by maximization of mutual information. Int J Comput Vis 1997;24:137-54. https://doi.org/10.1023/A:1007958904918.

    Article  Google Scholar 

  28. Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997;16:187-98. https://doi.org/10.1109/42.563664.

    Article  CAS  PubMed  Google Scholar 

  29. Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 1999;32:71-86. https://doi.org/10.1016/S0031-3203(98)00091-0.

    Article  Google Scholar 

  30. Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 2003;22:986-1004. https://doi.org/10.1109/TMI.2003.815867.

    Article  PubMed  Google Scholar 

  31. Hove J, Gambhir S, Kofoed K, et al. Quantitation of the regional blood flow in the interventricular septum using positron emission tomography and nitrogen-13 ammonia. Eur J Nucl Med Mol Imaging 2003;30:109-16. https://doi.org/10.1007/s00259-002-1014-z.

    Article  PubMed  Google Scholar 

  32. Tout D, Tonge CM, Muthu S, Arumugam P. Assessment of a protocol for routine simultaneous myocardial blood flow measurement and standard myocardial perfusion imaging with rubidium-82 on a high count rate positron emission tomography system. Nucl Med Commun 2012;33:1202-11. https://doi.org/10.1097/mnm.0b013e3283567554.

    Article  PubMed  Google Scholar 

  33. Konerman MC, Lazarus JJ, Weinberg RL, et al. Reduced myocardial flow reserve by positron emission tomography predicts cardiovascular events after cardiac transplantation. Circ Heart Fail. 2018;11:e004473. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004473.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosures

B.C. Lee, J.B. Moody, and A. Poitrasson-Rivière are employees of INVIA Medical Imaging Solutions. A.C. Melvin and R.L. Weinberg have no disclosures. J.R. Corbett and E.P. Ficaro are owners of INVIA Medical Imaging Solutions. V.L. Murthy has received consulting fees from Ionetix, Inc, and owns stock in General Electric and Cardinal Health, and stock options in Ionetix, Inc. V. L. Murthy is supported by 1R01HL136685 from the National, Heart, Lung, Blood Institute, and research Grants from INVIA Medical Imaging Solutions and Siemens Medical Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward P. Ficaro PhD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1205 kb)

Supplementary material 2 (PPTX 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.C., Moody, J.B., Poitrasson-Rivière, A. et al. Automated dynamic motion correction using normalized gradient fields for 82rubidium PET myocardial blood flow quantification. J. Nucl. Cardiol. 27, 1982–1998 (2020). https://doi.org/10.1007/s12350-018-01471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-01471-4

Keywords

Navigation