Skip to main content
Log in

Torpedo Formation and Purkinje Cell Loss: Modeling their Relationship in Cerebellar Disease

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Torpedo formation and Purkinje cell (PC) loss represent standard and inter-related cerebellar responses to injury. Surprisingly, the nature of their relationship has not been carefully characterized across a range of normal and disease states. Are brains with more torpedoes expected to have fewer PCs? We quantified torpedoes and PCs in four groups: essential tremor (ET), spinocerebellar ataxia (SCA), multiple system atrophy-cerebellar (MSA-C), and controls. Brains from 100 individuals (58 ET, 27 controls, 7 SCA, 8 MSA-C) were available at the New York Brain Bank. After complete neuropathological assessment, a standard parasagittal neocerebellar block was harvested; a 7-μm thick section was stained with Luxol fast blue/hematoxylin and eosin; and torpedoes and PCs were quantified. For a given PC count, SCA and MSA-C cases often had higher torpedo counts than ET cases or controls. Furthermore, the relationship between torpedo and PC counts was complex. The correlation between torpedo and PC counts was negative in ET cases (i.e., individuals with more torpedoes had fewer PCs [i.e., more PC loss]) whereas the relationship was positive in MSA-C cases (i.e., individuals with fewer PCs [i.e., more PC loss] had fewer torpedoes). Patients with SCA showed both patterns. When all diagnostic groups were combined, the correlation was best fit by a quadratic (i.e., parabolic) model rather than a simple linear model; this model incorporated data on the negative correlation in ET cases, the mixed results in SCA cases, and the positive correlation in MSA-C cases (r = 0.636). The relationship between torpedo and PC counts was complex and heterogeneous across a range of cerebellar disease states, and was best characterized by a quadratic rather than a simple model. With more severe cerebellar disease, torpedoes can be quite numerous and are likely a common feature of surviving PCs, but eventually, dramatic loss of PC leads to a paradoxical reduction in observable torpedoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mizushima S. An ultrastructural observation of torpedoes in the human degenerative cerebellum. J Clin Electron Microsc. 1976;9:672–3.

    Google Scholar 

  2. Mann DM, Stamp JE, Yates PO, Bannister CM. The fine structure of the axonal torpedo in Purkinje cells of the human cerebellum. Neurol Res. 1980;1:369–78.

    CAS  PubMed  Google Scholar 

  3. Louis ED, Faust PL, Vonsattel JP, et al. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain. 2007;130:3297–307.

    Article  PubMed  Google Scholar 

  4. Louis ED, Faust PL, Vonsattel JP, et al. Torpedoes in Parkinson’s disease, Alzheimer’s disease, essential tremor, and control brains. Mov Disord. 2009;24:1600–5.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Louis ED, Faust PL, Vonsattel JP, Erickson-Davis C. Purkinje cell axonal torpedoes are unrelated to advanced aging and likely reflect cerebellar injury. Acta Neuropathol. 2009;117:719–21.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Takahashi N, Iwatsubo T, Nakano I, Machinami R. Focal appearance of cerebellar torpedoes associated with discrete lesions in the cerebellar white matter. Acta Neuropathol. 1992;84(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  7. Grimaldi G, Manto M. Is essential tremor a Purkinjopathy? The role of the cerebellar cortex in its pathogenesis. Mov Disord. 2013;28:1759–61.

    Article  PubMed  Google Scholar 

  8. Bares M, Lungu OV, Husarova I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson’s disease. Cerebellum. 2010;9:124–35.

    Article  PubMed  Google Scholar 

  9. Cerasa A, Messina D, Nicoletti G, et al. Cerebellar atrophy in essential tremor using an automated segmentation method. Am J Neuroradiol. 2009;30(6):1240–3.

    Article  CAS  PubMed  Google Scholar 

  10. Benito-Leon J. Essential tremor: one of the most common neurodegenerative diseases? Neuroepidemiology. 2011;36:77–8.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Rossi F, Jankovski A, Sotelo C. Differential regenerative response of Purkinje cell and inferior olivary axons confronted with embryonic grafts: environmental cues versus intrinsic neuronal determinants. J Comp Neurol. 1995;359:663–77.

    Article  CAS  PubMed  Google Scholar 

  12. Bravin M, Savio T, Strata P, Rossi F. Olivocerebellar axon regeneration and target reinnervation following dissociated Schwann cell grafts in surgically injured cerebella of adult rats. Eur J Neurosci. 1997;9:2634–49.

    Article  CAS  PubMed  Google Scholar 

  13. Dusart I, Sotelo C. Lack of Purkinje cell loss in adult rat cerebellum following protracted axotomy: degenerative changes and regenerative attempts of the severed axons. J Comp Neurol. 1994;347:211–32.

    Article  CAS  PubMed  Google Scholar 

  14. Rossi F, Jankovski A, Sotelo C. Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J Neurosci. 1995;15:2040–56.

    CAS  PubMed  Google Scholar 

  15. Babij R, Lee M, Cortes E, Vonsattel JP, Faust PL, Louis ED. Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. Brain. 2013;136:3051–61.

    Article  PubMed  Google Scholar 

  16. Scherzed W, Brunt ER, Heinsen H, et al. Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Cerebellum. 2012;1:749–60.

    Article  Google Scholar 

  17. Auburger GW. Spinocerebellar ataxia type 2. Handb Clin Neurol. 2012;103:423–36.

    Article  PubMed  Google Scholar 

  18. Hellenbroich Y, Gierga K, Reusche E, et al. Spinocerebellar ataxia type 4 (SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transm. 2006;113:829–43.

    Article  CAS  PubMed  Google Scholar 

  19. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124:1–21.

    Article  CAS  PubMed  Google Scholar 

  20. Donato SD, Mariotti C, Taroni F. Spinocerebellar ataxia type 1. Handb Clin Neurol. 2012;103:399–421.

    Article  PubMed  Google Scholar 

  21. Hoche F, Baliko L, den Dunnen W, et al. Spinocerebellar ataxia type 2 (SCA2): identification of early brain degeneration in one monozygous twin in the initial disease stage. Cerebellum. 2011;10:245–53.

    Article  PubMed  Google Scholar 

  22. Solodkin A, Gomez CM. Spinocerebellar ataxia type 6. Handb Clin Neurol. 2012;103:461–73.

    Article  PubMed  Google Scholar 

  23. Louis ED, Faust PL, Vonsattel JP. Purkinje cell loss is a characteristic of essential tremor: towards a more mature understanding of pathogenesis. Parkinsonism Relat Disord. 2012;18:1003–4.

    Article  PubMed  Google Scholar 

  24. Axelrad JE, Louis ED, Honig LS, et al. Reduced Purkinje cell number in essential tremor: a postmortem study. Arch Neurol. 2008;65:101–7.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Harasymiw JW, Bean P. Identification of heavy drinkers by using the early detection of alcohol consumption score. Alcohol Clin Exp Res. 2001;25:228–35.

    Article  CAS  PubMed  Google Scholar 

  27. Louis ED, Zheng W, Applegate L, Shi L, Factor-Litvak P. Blood harmane concentrations and dietary protein consumption in essential tremor. Neurology. 2005;65:391–6.

    Article  CAS  PubMed  Google Scholar 

  28. Braak H, Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging. 1997;18:S85–8.

    Article  CAS  PubMed  Google Scholar 

  29. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112:389–404.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  31. Mirra SS. The CERAD neuropathology protocol and consensus recommendations for the postmortem diagnosis of Alzheimer’s disease: a commentary. Neurobiol Aging. 1997;18:S91–4.

    Article  CAS  PubMed  Google Scholar 

  32. Louis ED, Vonsattel JP, Honig LS, Ross GW, Lyons KE, Pahwa R. Neuropathologic findings in essential tremor. Neurology. 2006;66:1756–9.

    Article  CAS  PubMed  Google Scholar 

  33. Miyamae M, Kaneda K, Domae N, Figueredo VM. Cardioprotection by regular ethanol consumption: potential mechanisms and clinical application. Curr Drug Abus Rev. 2010;3:39–48.

    Article  CAS  Google Scholar 

  34. Wesley D, Cox HF. Modeling total cholesterol as predictor of mortality: the low-cholesterol paradox. J Insur Med. 2011;42:62–75.

    PubMed  Google Scholar 

  35. Louis ED. Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol. 2010;9:613–22.

    Article  PubMed  Google Scholar 

  36. Erickson-Davis CRFP, Vonsattel JGV, Gupta S, Honig LS, Louis ED. “Hairy baskets” associated with degenerative Purkinje cell changes in essential tremor. J Neuropathol Exp Neurol. 2010;69:262–71.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Yu M, Ma K, Faust PL, et al. Increased number of Purkinje cell dendritic swellings in essential tremor. Eur J Neurol. 2012;19:625–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kuo SH, Erickson-Davis C, Gillman A, Faust PL, Vonsattel JP, Louis ED. Increased number of heterotopic Purkinje cells in essential tremor. J Neurol Neurosurg Psychiatry. 2011;82:1038–40.

    Article  PubMed  Google Scholar 

  39. Louis ED, Yi H, Erickson-Davis C, Vonsattel JP, Faust PL. Structural study of Purkinje cell axonal torpedoes in essential tremor. Neurosci Lett. 2009;450:287–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Beaulieu JM, Nguyen MD, Julien JP. Late onset of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol. 1999;147:531–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Liem RK, Leung CL. Neuronal intermediate filament overexpression and neurodegeneration in transgenic mice. Exp Neurol. 2003;184:3–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Tissue samples from six SCA-1 cerebellum were provided by Dr. Arnulf H. Koeppen, Albany, NY, on behalf of the National Ataxia Foundation. This work was funded by NIH R01NS042859.

Conflict of Interest

There are no conflicts of interest or competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elan D. Louis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louis, E.D., Kuo, SH., Vonsattel, JP.G. et al. Torpedo Formation and Purkinje Cell Loss: Modeling their Relationship in Cerebellar Disease. Cerebellum 13, 433–439 (2014). https://doi.org/10.1007/s12311-014-0556-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0556-5

Keywords

Navigation