Skip to main content
Log in

Pathoanatomy of Cerebellar Degeneration in Spinocerebellar Ataxia Type 2 (SCA2) and Type 3 (SCA3)

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is one of the well-known targets of the pathological processes underlying spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Despite its pivotal role for the clinical pictures of these polyglutamine ataxias, no pathoanatomical studies of serial tissue sections through the cerebellum have been performed in SCA2 and SCA3 so far. Detailed pathoanatomical data are an important prerequisite for the identification of the initial events of the underlying disease processes of SCA2 and SCA3 and the reconstruction of its spread through the brain. In the present study, we performed a pathoanatomical investigation of serial thick tissue sections through the cerebellum of clinically diagnosed and genetically confirmed SCA2 and SCA3 patients. This study demonstrates that the cerebellar Purkinje cell layer and all four deep cerebellar nuclei consistently undergo considerable neuronal loss in SCA2 and SCA3. These cerebellar findings contribute substantially to the pathogenesis of clinical symptoms (i.e., dysarthria, intention tremor, oculomotor dysfunctions) of SCA2 and SCA3 patients and may facilitate the identification of the initial pathological alterations of the pathological processes of SCA2 and SCA3 and reconstruction of its spread through the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Please note that these oculomotor dysfunctions evolve during different disease stages of SCA2 and SCA3. They may change their clinical features or even disappear in the advanced disease stages of SCA2 and SCA3 reflecting the widespread affection, but different vulnerability of the structures of the oculomotor network of the human brain and the chronological sequence of their affection during SCA2 and SCA3.

References

  1. Klockgether T. Ataxias. In: Goetz CG, editor. Textbook of clinical neurology. Philadelphia: WB Saunders; 2003. p. 741–57.

    Google Scholar 

  2. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  3. Soong BW, Paulson HL. Spinocerebellar ataxias: an update. Curr Opin Neurol. 2007;20:438–46.

    Article  PubMed  CAS  Google Scholar 

  4. Gilman S. The spinocerebellar ataxias. Clin Neuropharmacol. 2000;23:296–303.

    Article  PubMed  CAS  Google Scholar 

  5. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91.

    Article  PubMed  CAS  Google Scholar 

  6. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–8.

    Article  PubMed  CAS  Google Scholar 

  7. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.

    Article  PubMed  CAS  Google Scholar 

  8. Riess O, Laccone FA, Gispert S, Schöls L, Zühlke C, Vieira-Saecker AM, et al. SCA2 trinucleotide expansion in German SCA patients. Neurogenetics. 1997;1:59–64.

    Article  PubMed  CAS  Google Scholar 

  9. Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I—clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119:1497–505.

    Article  PubMed  Google Scholar 

  10. Bürk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2 and SCA3. J Neurol. 1999;246:789–97.

    Article  PubMed  Google Scholar 

  11. Cancel G, Dürr A, Didierjean O, Imbert G, Bürk K, Lezin A, et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet. 1997;6:709–15.

    Article  PubMed  CAS  Google Scholar 

  12. Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain. 1995;118:1573–81.

    Article  PubMed  Google Scholar 

  13. Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, et al. Spinocerebellar ataxia 3 and Machado–Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol. 1996;39:490–9.

    Article  PubMed  Google Scholar 

  14. Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM. Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology. 1997;49:1247–51.

    Article  PubMed  CAS  Google Scholar 

  15. Iwabuchi K, Tsuchiya K, Uchihara T, Yagishita S. Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev Neurol. 1999;155:255–70.

    PubMed  CAS  Google Scholar 

  16. Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32.

    Article  PubMed  Google Scholar 

  17. Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4:62–73.

    Article  PubMed  CAS  Google Scholar 

  18. Munoz E, Rey MJ, Mila M, Cardozo A, Ribalta T, Tolosa E, Ferrer I. Intranuclear inlcusions, neuronal loss and CAG mosaicism in two patients with Machado-Joseph disease. J Neurol Sci. 2002;200:19–25.

    Article  PubMed  CAS  Google Scholar 

  19. Rüb U, Del Turco D, Bürk K, Diaz GO, Auburger G, Mittelbronn M, et al. Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol. 2005;31:127–40.

    Article  PubMed  Google Scholar 

  20. Rüb U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, Reifenberger G, et al. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain. 2003;126:2257–72.

    Article  PubMed  Google Scholar 

  21. Rüb U, de Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol. 2006;16:218–27.

    Article  PubMed  Google Scholar 

  22. Rüb U, Gierga K, Brunt ER, de Vos RA, Bauer M, Schöls L, et al. Spinocerebellar ataxias types 2 and 3: degeneration of the pre-cerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm. 2005;112:1523–45.

    Article  PubMed  Google Scholar 

  23. Rüb U, Seidel K, Özerden I, Gierga K, Brunt ER, Schöls L, et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev. 2007;53:235–49.

    Article  PubMed  Google Scholar 

  24. Grinberg LT, Rüb U, Ferretti RE, Nitrini R, Farfel JM, Polichiso L, et al. The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol. 2009;35:406–15.

    Article  PubMed  CAS  Google Scholar 

  25. Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1:213–6.

    Article  PubMed  CAS  Google Scholar 

  26. Smithson KG, MacVicar BA, Hatton GI. Polyethylene glycol embedding: a technique compatible with immunocytochemistry, enzyme histochemistry, histofluorescence and intracellular staining. J Neurosci Methods. 1983;7:27–41.

    Article  PubMed  CAS  Google Scholar 

  27. Braak H, Rüb U, Del Tredici. Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol. 2003;29:60–76.

    Article  PubMed  CAS  Google Scholar 

  28. Rüb U, Brunt ER, Del Turco D, de Vos RA, Gierga K, Paulson H, et al. Guidelines for the pathoanatomical examination of the lower brain stem in ingestive and swallowing disorders and its application to a dysphagic spinocerebellar ataxia type 3 patient. Neuropathol Appl Neurobiol. 2003;29:1–13.

    Article  PubMed  Google Scholar 

  29. Rüb U, Schultz C, Del Tredici K, Gierga K, Reifenberger G, de Vos RA, et al. Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol. 2003;29:418–33.

    Article  PubMed  Google Scholar 

  30. Ghez C. The cerebellum. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 3dth ed. New York: Elsevier; 1992. p. 596–607.

    Google Scholar 

  31. Gilman S. Cerebellum and motor dysfunction. In: Asbury AK, McKhann GM, McDonald WI, editors. Diseases of the nervous system: clinical neurobiology. 2nd ed. Philadelphia: Saunders; 1992. p. 368–89.

    Google Scholar 

  32. Robertson LT, Dow RS. Anatomy of the cerebellum. In: Schaltenbrand G, Walker AE, editors. Stereotaxy of the human brain. Stuttgart: Thieme; 1982. p. 60–70.

    Google Scholar 

  33. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10:233–60.

    Article  PubMed  CAS  Google Scholar 

  34. Voogd J, Barmack NH. Oculomotor cerebellum. Prog Brain Res. 2006;151:231–68.

    Article  PubMed  Google Scholar 

  35. Voogd J, Feirabend HKP, Schoen JHR. Cerebellum and precerebellar nuclei. In: Paxinos G, editor. The human central nervous system. San Diego: Academic; 1990. p. 321–86.

    Google Scholar 

  36. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21:370–5.

    Article  PubMed  CAS  Google Scholar 

  37. Voogd J, Nieuwenhuys R, Van Dongen DAM, Ten Donkelhaar HJ. Mammals. In: Nieuwenhys R, Ten Donkelhaar HH, Nicholson C, editors. The central nervous system of vertebrates. Berlin: Springer; 1998. p. 1637–2097.

    Google Scholar 

  38. Hutchins B, Weber JT. A rapid myelin stain for frozen sections: modification of the Heidenhain procedure. J Neurosci Methods. 1983;7:289–94.

    Article  PubMed  CAS  Google Scholar 

  39. Riley HA. An atlas of the basal ganglia, brainstem and spinal cord. Baltimore: Williams & Wilkins; 1943.

    Google Scholar 

  40. Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26:44–50.

    Article  PubMed  CAS  Google Scholar 

  41. Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ. Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a stereological experiment. J Neurosci Methods. 2008;168:42–7.

    Article  PubMed  CAS  Google Scholar 

  42. Bortz J, Lienert GA, Boehnke K. Verteilungsfreie methoden in der biostatistik. Berlin: Springer; 1990.

    Google Scholar 

  43. Rüb U, Brunt ER, de Vos RA, Del Turco D, Del Tredici K, Gierga K, et al. Degeneration of the central vestibular system in spinocerebellar ataxia type 3 (SCA3) patients and its possible clinical significance. Neuropathol Appl Neurobiol. 2004;30:402–14.

    Article  PubMed  Google Scholar 

  44. Rüb U, Brunt ER, Petrasch-Parwez E, Schöls L, Theegarten D, Auburger G, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32:635–49.

    Article  PubMed  Google Scholar 

  45. Gierga K, Schelhaas H, Brunt E, Seidel K, Scherzed W, Egensperger R, et al. Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol. 2009;35:515–27.

    Article  PubMed  CAS  Google Scholar 

  46. Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42:933–50.

    Article  PubMed  CAS  Google Scholar 

  47. Rüb U, Brunt ER, Gierga K, Seidel K, Schultz C, Schöls L, et al. Spinocerebellar ataxia type 7 (SCA7): first report of a systematic neuropathological study of the brain of a patient with a very short expanded CAG-repeat. Brain Pathol. 2005;15:287–95.

    Article  PubMed  Google Scholar 

  48. Rüb U, Brunt ER, Seidel K, Gierga K, Mooy CM, Kettner M, et al. Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset patient without visual impairments. Neuropathol Appl Neurobiol. 2008;34:155–68.

    Article  PubMed  Google Scholar 

  49. Heinsen H, Heinsen YL. Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol. 1991;14:167–73.

    Google Scholar 

  50. Büttner U, Büttner-Ennever JA. Present concepts of oculomotor organization. Prog Brain Res. 2006;151:1–42.

    Article  PubMed  Google Scholar 

  51. Horn AKE, Büttner U, Büttner-Ennever JA. Brainstem and cerebellar structures for eye movement generation. In: Büttner U, editor. Vestibular dysfunction and its therapy. Basel: Karger; 1999. p. 1–25.

    Google Scholar 

  52. Leigh RJ, Zee DS. The neurology of eye movements. 4th ed. Oxford: University Press; 2006.

    Google Scholar 

  53. Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001;24:981–1004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Deutsche Forschungsgemeinschaft (RU 1215/1-2), the Deutsche Heredo-Ataxie Gesellschaft (DHAG), the ADCA-Vereniging Nederland, the Stiftung Hofffnung (Köln, Germany) and the Dr. Senckenbergische Stiftung (Frankfurt/Main, Germany). The skillful assistance of M. Babl, B. Meseck-Selchow, M. Bouzrou (tissue processing and immunohistochemistry), I. Szasz (graphics), M. Hütten and D. von Meltzer (secretary) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Rüb.

Additional information

WF den Dunnen and U Rüb are joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherzed, W., Brunt, E.R., Heinsen, H. et al. Pathoanatomy of Cerebellar Degeneration in Spinocerebellar Ataxia Type 2 (SCA2) and Type 3 (SCA3). Cerebellum 11, 749–760 (2012). https://doi.org/10.1007/s12311-011-0340-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0340-8

Keywords

Navigation