Skip to main content

Advertisement

Log in

Spinocerebellar Ataxia Type 2 (SCA2): Identification of Early Brain Degeneration in One Monozygous Twin in the Initial Disease Stage

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 2 (SCA2) is a progressive autosomal dominantly inherited cerebellar ataxia and is assigned to the CAG repeat or polyglutamine diseases. Recent morphological studies characterized the pathoanatomical features in heterozygous SCA2 patients and revealed severe neuronal loss in a large variety of cerebellar and extra-cerebellar brain sites. In the present study, we examined the brain pathoanatomy of a monozygous twin of a large Hungarian SCA2 family with pathologically extended CAG repeats in both SCA2 alleles. This unique patient was in the initial clinical stage of SCA2 and died almost 3 years after SCA2 onset. Upon pathoanatomical investigation, we observed loss of giant Betz pyramidal cells in the primary motor cortex, degeneration of sensory thalamic nuclei, the Purkinje cell layer, and deep cerebellar nuclei, as well as select brainstem nuclei (i.e., substantia nigra, oculomotor nucleus, reticulotegmental nucleus of the pons, facial, lateral vestibular, and raphe interpositus nuclei, inferior olive). All of these degenerated brain gray matter structures are known as consistent targets of the underlying pathological process in heterozygous SCA2 patients. Since they were already involved in our patient within 3 years after disease onset, we think that we were for the first time able to identify the early brain targets of the pathological process of SCA2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain. 1995;118:1573–81.

    Article  PubMed  Google Scholar 

  2. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 1997;97:306–10.

    Article  Google Scholar 

  3. Filla A, De Michele G, Banfi S, Santoro L, Perretti A, Cavalcanti F, et al. Has spinocerebellar ataxia type 2 a distinct phenotype? Genetic and clinical study of an Italian family. Neurology. 1995;45:793–6.

    PubMed  CAS  Google Scholar 

  4. Klockgether T. Ataxias. In: Goetz CG, editor. Textbook of clinical neurology. 2nd ed. Philadelphia: Saunders; 2003. p. 741–57.

    Google Scholar 

  5. Lastres-Becker I, Rüb U, Auburger G. Spinocerebellar ataxia 2 (SCA2). Cerebellum. 2008;7:115–24.

    Article  PubMed  CAS  Google Scholar 

  6. Matilla-Dueñas A, Sánchez I, Corral-Juan M, Dávalos A, Alvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2010;9:148–66.

    Article  PubMed  Google Scholar 

  7. Pang JT, Giunti P, Chamberlain S, An SF, Vitaliani R, Scaravilli T, et al. Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two cases. Brain. 2002;125:656–63.

    Article  PubMed  Google Scholar 

  8. Auburger G, Diaz GO, Capote RF, Sanchez SG, Perez MP, Del Cueto ME, et al. Autosomal dominant ataxia: genetic evidence for locus heterogeneity from a Cuban founder-effect population. Am J Hum Genet. 1990;46:1163–77.

    PubMed  CAS  Google Scholar 

  9. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91.

    Article  PubMed  CAS  Google Scholar 

  10. Pulst SM, Nechiporuk A, Nechiporuk T. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.

    Article  PubMed  CAS  Google Scholar 

  11. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  12. Gierga K, Bürk K, Bauer M, Orozco Diaz G, Auburger G, Schultz C, et al. Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol. 2005;109:617–31.

    Article  PubMed  CAS  Google Scholar 

  13. Hoche F, Seidel K, Brunt ER, Auburger G, Schöls L, Bürk K, et al. Involvement of the auditory brainstem system in spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3), and type 7 (SCA7). Neuropathol Appl Neurobiol. 2008;34:479–91.

    Article  PubMed  CAS  Google Scholar 

  14. Orozco G, Estrada R, Perry TL, Araña J, Fernandez R, Gonzalez-Quevedo A, et al. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological, and biochemical findings. J Neurol Sci. 1989;93:37–50.

    Article  PubMed  CAS  Google Scholar 

  15. Rüb U, Brunt ER, Petrasch-Parwez E, Schöls L, Theegarten D, Auburger G, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32:635–49.

    Article  PubMed  Google Scholar 

  16. Rüb U, Del Turco D, Bürk K, Orozco Diaz G, Auburger G, Mittelbronn M, et al. Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol. 2005;31:127–40.

    Article  PubMed  Google Scholar 

  17. Rüb U, Del Turco D, Del Tredici K, de Vos RAI, Brunt ER, Reifenberger G, et al. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain. 2003;126:2257–72.

    Article  PubMed  Google Scholar 

  18. Rüb U, Gierga K, Brunt ER, de Vos RAI, Bauer M, Schöls L, et al. Spinocerebellar ataxias types 2 and 3: degeneration of the pre-cerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm. 2005;112:1523–45.

    Article  PubMed  Google Scholar 

  19. Rüb U, Schultz C, Del Tredici K, Gierga K, Reifenberger G, de Vos RAI, et al. Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol. 2003;29:418–33.

    Article  PubMed  Google Scholar 

  20. Rüb U, Seidel K, Özerden I, Gierga K, Brunt ER, Schöls L, et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Brain Res Rev. 2007;53:235–49.

    Article  Google Scholar 

  21. Schmitz-Hübsch T, du Montcel ST, Baliko L. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  Google Scholar 

  22. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res. 1975;12:189–98.

    Article  PubMed  CAS  Google Scholar 

  23. Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1:213–6.

    Article  PubMed  CAS  Google Scholar 

  24. Smithson KG, MacVicar BA, Hatton GI. Polyethylene glycol embedding: a technique compatible with immunocytochemistry, enzyme histochemistry, histofluorescence and intracellular staining. J Neurosci Meth. 1983;7:27–41.

    Article  CAS  Google Scholar 

  25. Braak H, Rüb U, Del Tredici K. Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol. 2003;29:60–76.

    Article  PubMed  CAS  Google Scholar 

  26. Hutchins B, Weber JT. A rapid myelin stain for frozen sections: modification of the Heidenhain procedure. J Neurosci Meth. 1983;7:289–94.

    Article  CAS  Google Scholar 

  27. Riley HA. An atlas of the basal ganglia, brainstem and spinal cord. Baltimore: Williams & Wilkins; 1943.

    Google Scholar 

  28. Seidel K, Brunt ER, de Vos RA, Dijk F, van der Want HJ, Rüb U, et al. The p62 antibody reveals various cytoplasmic protein aggregates in spinocerebellar ataxia type 6. Clin Neuropathol. 2009;28:344–9.

    PubMed  CAS  Google Scholar 

  29. Seidel K, den Dunnen WF, Schultz C, Paulson H, Frank S, de Vos RA, et al. Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol. 2010;120:449–60.

    Article  PubMed  CAS  Google Scholar 

  30. Kuusisto E, Kauppinen T, Alafuzoff I. Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathol Appl Neurobiol. 2008;34:169–80.

    Article  PubMed  CAS  Google Scholar 

  31. Braak E, Braak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. 1994;87:554–67.

    Article  PubMed  CAS  Google Scholar 

  32. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  PubMed  CAS  Google Scholar 

  33. Goedert M. Introduction to the tauopathies. In: Dickson DW, editor. Neurodegeneration: the molecular pathology of dementia and movement disorders. Basel: ISN Neuropath; 2003. p. 82–5.

    Google Scholar 

  34. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  35. Gai WP, Power JH, Blumbergs PC, Culvenor JG, Jensen PH. Alpha-synuclein immunoisolation of glial inclusions from multiple system atrophy brain tissue reveals multiprotein components. J Neurochem. 1999;73:2093–100.

    PubMed  CAS  Google Scholar 

  36. Jellinger KA, Mizuno Y. Parkinson’s disease. In: Dickson DW, editor. Neurodegeneration: the molecular pathology of dementia and movement disorders. Basel: ISN Neuropath; 2003. p. 159–87.

    Google Scholar 

  37. Spillantini MG. Introduction to synucleinopathies. In: Dickson DW, editor. Neurodegeneration: the molecular pathology of dementia and movement disorders. Basel: ISN Neuropath; 2003. p. 156–8.

    Google Scholar 

  38. Alexander GE, DeLong NR. Central mechanisms of initiation and control of movement. In: Asbury AK, McKhann GM, McDonald WI, editors. Diseases of the nervous system: clinical neurobiology. 2nd ed. Philadelphia: Saunders; 1992. p. 285–308.

    Google Scholar 

  39. Rüb U, Jen JC, Braak H, Deller T. Functional neuroanatomy of the human premotor oculomotor brainstem nuclei: insights from postmortem and advanced in vivo imaging studies. Exp Brain Res. 2008;187:167–80.

    Article  PubMed  Google Scholar 

  40. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP—thirty-one years (1969–2000). Neurochem Res. 2000;25:1439–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by grants from the Deutsche Forschungsgemeinschaft (RU 1215/1-2), the ADCA-Vereniging Nederland, and the Bernd Fink-Stiftung (Düsseldorf, Germany). BM was founded by the following grants: OTKA 73430 ETT 243/2009 and EUROSCA LSHM-CT-2004-503304. The skillful assistance of M. Babl (tissue processing and immunohistochemistry), I. Szasz (graphics), and M. Hütten (secretary) is thankfully acknowledged. We want to thank W.P. Gai for the donation of the alpha-synuclein antibody.

Conflict of Interest

All authors have no actual or potential conflicts of interest to disclose, including financial, personal, or other relationships with other people or organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Rüb.

Additional information

Franziska Hoche and Laszlo Balikó are joint first authors.

Udo Rüb and Bela Melegh are joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoche, F., Balikó, L., den Dunnen, W. et al. Spinocerebellar Ataxia Type 2 (SCA2): Identification of Early Brain Degeneration in One Monozygous Twin in the Initial Disease Stage. Cerebellum 10, 245–253 (2011). https://doi.org/10.1007/s12311-010-0239-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0239-9

Keywords

Navigation