Skip to main content
Log in

Integrated approaches to study the drought tolerance mechanism in hot pepper (Capsicum annuum L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Drought is one of the predominant abiotic stresses which have phenomenal impact on crop productivity. Alterations in aquaporin gene expressions are part of complex molecular responses by plant in response to drought. To better understand the role of aquaporins in economically important crop chilli (Capsicum annuum), drought induced gene expression of twelve aquaporins was determined in drought tolerant—KCa-4884 and drought susceptible—G-4 genotypes. Conjointly, the effect of drought on leaf water status and photosynthetic parameters were evaluated. Gene expression of all examined 12 aquaporins was up-regulated in KCa-4884 and in contrast, all the aquaporin genes were down-regulated in G-4 under drought stress. Significant variations among two chilli genotypes have been recorded in photosynthetic rate (Pn), stomatal conductance (Gs), and relative water content (RWC), sub-stomatal CO2 concentration (Ci). KCa-4884 revealed significantly high rates of Pn and RWC and decreased Gs under water deficit conditions providing evidence for superior drought adaptive strategies. Differences in physiological parameters illustrate prevention of water loss during drought. Up-regulation of aquaporins in drought tolerant genotype implicates their possible role in water relations and photosynthetic performance even under extended drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59(3):469–484

    Article  CAS  Google Scholar 

  • Alexandersson E, Danielson JÅ, Råde J, Moparthi VK, Fontes M, Kjellbom P, Johanson U (2008) Transcriptional regulation of aquaporins in accessions of arabidopsis in response to drought stress. Plant J 61(4):650–660

    Article  Google Scholar 

  • Anderberg Hanna I, Per K, Urban J (2012) Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Front Plant Sci 3:33

    Article  CAS  Google Scholar 

  • Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44(1):147–153

    Article  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014a) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27(4):349–363

    Article  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014b) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27(4):349–363

    Article  Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66(2):306–317

    Article  CAS  Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139(2):790–805

    Article  CAS  Google Scholar 

  • Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L, Deng X (2016) Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci 6:1241

    PubMed  PubMed Central  Google Scholar 

  • Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1(2):581

    Article  CAS  Google Scholar 

  • Danielson JÅ, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8(1):45

    Article  Google Scholar 

  • Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U (2009) Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol Plantarum 31(6):1129

    Article  CAS  Google Scholar 

  • Ebrahimiyan M, Majidi MM, Mirlohi A, Noroozi A (2013) Physiological traits related to drought tolerance in tall fescue. Euphytica 190(3):401–414

    Article  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16(1):215–228

    Article  CAS  Google Scholar 

  • Galmés J, Pou A, Alsina MM, Tomas M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226(3):671–681

    Article  Google Scholar 

  • Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol 62(1–2):305–323

    Article  CAS  Google Scholar 

  • He F, Zhang H, Tang M (2016) Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. Mycorrhiza 26(4):311–323

    Article  CAS  Google Scholar 

  • Hove RM, Bhave M (2011) Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol 75(4–5):413–430

    Article  CAS  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54(5):713–725

    Article  CAS  Google Scholar 

  • Khan K, Agarwal P, Shanware A, Sane VA (2015) Heterologous expression of two Jatropha aquaporins imparts drought and salt tolerance and improves seed viability in transgenic Arabidopsis thaliana. PLoS ONE 10(6):e0128866

    Article  Google Scholar 

  • Kirscht A, Kaptan SS, Bienert GP, Chaumont F, Nissen P, de Groot BL, Kjellbom P, Gourdon P, Johanson U (2016) Crystal structure of an ammonia-permeable aquaporin. PLoS Biol 14(3):e1002411

    Article  Google Scholar 

  • Kong W, Shaozong Y, Yulu W, Mohammed B, Xiaopeng F (2017) Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris. PeerJ 5:e3747

    Article  Google Scholar 

  • Li J, Cai W (2015) A ginseng PgTIP1 gene whose protein biological activity related to Ser128 residue confers faster growth and enhanced salt stress tolerance in Arabidopsis. Plant Sci 234:74–85

    Article  CAS  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim et Biophy Acta (BBA)-General Sub 1840(5):1574–1582

    Article  CAS  Google Scholar 

  • Liu LH, Ludewig U, Gassert B, Frommer WB, von Wirén N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133(3):1220–1228

    Article  CAS  Google Scholar 

  • Liu Q, Wang H, Zhang Z, Wu J, Feng Y, Zhu Z (2009) Divergence in function and expression of the NOD26-like intrinsic proteins in plants. BMC Genom 10(1):313

    Article  Google Scholar 

  • Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15(1):152

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65(19):3049–3057

    Article  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Biol 52(1):469–497

    Article  CAS  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aus J Crop Sci 4(8):580

    CAS  Google Scholar 

  • Martinez-Ballesta M, Carvajal M (2014) New challenges in plant aquaporin biotechnology. Plant Sci 217:71–77

    Article  Google Scholar 

  • Martins CD, Pedrosa AM, Du D, Gonçalves LP, Yu Q, Gmitter FG Jr, Costa MG (2015) Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS One 10(9):e0138786

    Article  Google Scholar 

  • Obroucheva NV, Sinkevich IA (2010) Aquaporins and cell growth. Rus J Plant Physiol 57(2):153–165

    Article  CAS  Google Scholar 

  • Ouyang W, Struik PC, Yin X, Yang J (2017) Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot 68(18):5191–5205

    Article  CAS  Google Scholar 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226(3):729–740

    Article  CAS  Google Scholar 

  • Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, Sebastiani L, Diaz-Espejo A (2014) Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J Exp Bot 65(12):3143–3156

    Article  CAS  Google Scholar 

  • Pflug EE, Buchmann N, Siegwolf RT, Schaub M, Rigling A, Arend M (2018) Resilient leaf physiological response of European beech (Fagus sylvatica L.) to summer drought and drought release. Front. Plant Sci 9:187

    Google Scholar 

  • Pinheiro C, Chaves MM (2010) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882

    Article  Google Scholar 

  • Pou A, Hipolito M, Jaume F, Stephen DT (2013) A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. Plant, Cell Environ 36(4):828–843

    Article  CAS  Google Scholar 

  • Prado K, Maurel C (2013) Regulation of leaf hydraulics: from molecular to whole plant levels. Front Plant Sci 4:255

    Article  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS (2013) Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Inter J Mol Sci 14(5):9497–9513

    Article  Google Scholar 

  • Reddy PS, Rao TS, Sharma KK, Vadez V (2015) Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene. 1:18–28

    Article  CAS  Google Scholar 

  • Reddy KS, Sekhar KM, Reddy AR (2017) Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity–photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.). Tree Physiol 37(7):926–937

    Article  CAS  Google Scholar 

  • Regon P, Panda P, Kshetrimayum E, Panda SK (2014) Genome-wide comparative analysis of tonoplast intrinsic protein (TIP) genes in plants. Funct Integ Genom 14(4):617–629

    Article  CAS  Google Scholar 

  • Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE 8(11):e79052

    Article  Google Scholar 

  • Rodrigues MI, Bravo JP, Sassaki FT, Severino FE, Maia IG (2013) The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: characterization of EgTIP2, a root-specific and osmotic stress-responsive gene. Plant Sci 213:106–113

    Article  CAS  Google Scholar 

  • Rouphael Y, Cardarelli M, Colla G, Rea E (2008) Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. Hort Sci 43(3):730–736

    Article  Google Scholar 

  • Santos AB, Mazzafera P (2013) Aquaporins and the control of the water status in coffee plants. Theoretical and Exe Plant Physiol 25(2):79–93

    Article  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14(4):869–876

    Article  CAS  Google Scholar 

  • Sun H, Li L, Lou Y, Zhao H, Gao Z (2016) Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Mol Biol Rep 43(5):437–450

    Article  CAS  Google Scholar 

  • Sutka Moira R, Milena EM, Victoria AV, Sandra M, Gabriela A (2016) Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes. J Plant Physiol 192:13–20

    Article  CAS  Google Scholar 

  • Toscano S, Farieri E, Ferrante A, Romano D (2016) Physiological and biochemical responses in two ornamental shrubs to drought stress. Front Plant Sci 7:645

    Article  Google Scholar 

  • Venkatesh J, Yu J, Park SW (2013) Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol Biochem 73:392–404

    Article  CAS  Google Scholar 

  • Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y (2011) Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophysl Res Comm 416(1):24–30

    Article  CAS  Google Scholar 

  • Wang LL, Chen AP, Zhong NQ, Liu N, Wu XM, Wang F, Yang CL, Romero MF, Xia GX (2013) The Thellungiella salsuginea tonoplast aquaporin TsTIP1; 2 functions in protection against multiple abiotic stresses. Plant Cell Physiol 55(1):148–161

    Article  Google Scholar 

  • Yin YX, Wang SB, Zhang HX, Xiao HJ, Jin JH, Ji JJ, Jing H, Chen RG, Arisha MH, Gong ZH (2015) Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.). Gene 563(1):87–93

    Article  CAS  Google Scholar 

  • Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, Liu XQ, He XL, Huang YH, Khan IA, Trethowan RM (2013) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS one 8(2):e56312

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signalling and responses in plants. Cell 167(2):313–324

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge University Grants Commission (UGC), Government of India (F.No: 30-10/2015/SA II), for providing financial assistance. Authors also sincerely acknowledge DST- FIST, Government of India (File No: SR/FST/LSI-608/2014 (C.)) for providing instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. R. Krishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 3 kb)

Supplementary material 2 (TXT 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahitya, U.L., Krishna, M.S.R. & Suneetha, P. Integrated approaches to study the drought tolerance mechanism in hot pepper (Capsicum annuum L.). Physiol Mol Biol Plants 25, 637–647 (2019). https://doi.org/10.1007/s12298-019-00655-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00655-7

Keywords

Navigation