Skip to main content
Log in

Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant’s response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na+ compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AQPs:

Aquaporins

CA:

Cold acclimation

MIP:

Major intrinsic protein

PgTIP1-OXP:

Arabidopsis plants overexpressed with PgTIP1

PIPs:

Plasma membrane intrinsic proteins

TIPs:

Tonoplast intrinsic proteins

cor:

Cold regulated

References

  • Agre P (1992) Clinical relevance of basic research on red cell membranes. Clin Res 40:176–186

    PubMed  CAS  Google Scholar 

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  PubMed  CAS  Google Scholar 

  • Aroca R, Amodeo G, Fernandez-Illescas S, Herman EM, Chaumont F, Chrispeels MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    Article  PubMed  CAS  Google Scholar 

  • Baiges I, Schaffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115:175–182

    Article  PubMed  CAS  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O, Kirch HH, Bohnert HJ (1999) Aquaporin localization—how valid are the TIP and PIP labels? Trends Plant Sci 4:86–88

    Article  PubMed  Google Scholar 

  • Blum A, Munns R, Passioura JB, Turner NC, Sharp RE, Boyer JS, Nguyen HT, Hsiao TC, Verma D, Hong Z (1996) Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol 110:1051–1053

    PubMed  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environment stress. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Chaumont F, Barrieu F, Herman EM, Chrispeels MJ (1998) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol 117:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plant and animal cells. Trends Biochem Sci 19:421–425

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterim-mediated transformation of Arabidopsis thaliana. Plant J 16:725–742

    Article  Google Scholar 

  • Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30:71–81

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Hachez C, Zelazny E, Chaumont F (2006) Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochim Biophys Acta 1758:1142–1156

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Jones JB Jr (1977) Elemental analysis of soil extracts and plant tissue ash by plasma emission spectroscopy. Commun Soil Sci Plant Anal 8:345–365

    Google Scholar 

  • Kaldenhoff R, Kolling A, Meyers J, Karmann U, Ruppel G, Richter G (1995) The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. Plant J 7:87–95

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Grote K, Zhu JJ, Zimmermann U (1998) Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J 14:121–128

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K (2003) Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant Cell Physiol 44:1378–1383

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of plant to environmental stress, 2nd edn. Academic, New York

    Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    Article  PubMed  CAS  Google Scholar 

  • Lim CC, Arora R, Townsend EC (1998) Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage. J Am Soc Hort Sci 123:246–252

    Google Scholar 

  • Lin WL, Peng YH, Li GW, Arora R, Tang ZC, Su WA, Cai WM (2007) Isolation and functional characterization of PgTIP1, a hormone autotrophic cells-specific tonoplast intrinsic protein in ginseng. J Exp Bot doi:10.1093/jxb/erl255

  • Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40:845–859

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102:12270–12275

    Article  PubMed  CAS  Google Scholar 

  • Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Marty F (1999) Plant vacuoles. Plant Cell 11:587–600

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Reizer J, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J 12:2241–2247

    PubMed  CAS  Google Scholar 

  • Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani-Nemoto S (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216:397–402

    PubMed  CAS  Google Scholar 

  • Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC (2004) Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. J Exp Bot 55:939–949

    Article  PubMed  CAS  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:research0001.1–research0001.17

    Google Scholar 

  • Reisen D, Leborgne-Castel N, Ozalp C, Chaumont F, Marty F (2003) Expression of a cauliflower tonoplast aquaporin tagged with GFP in tobacco suspension cells correlates with an increase in cell size. Plant Mol Biol 52:387–400

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Schaeffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876

    Article  PubMed  CAS  Google Scholar 

  • Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42:686–693

    Article  PubMed  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    Article  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Dhanaraj AL, Rowland LJ, Fu Y, Krebs SL, Arora R (2005) Comparative analysis of expressed sequence tags (ESTs) from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta 221:406–416

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Dhanaraj AL, Arora R, Rowland LJ, Fu Y, Sun L (2006) Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Plant Cell Environ 29:558–571

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, Tang ZC (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schaffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This journal paper of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa (Project 3601) was supported by Hatch Act and State of Iowa funds. We thank Dr Mark Westgate (Department of Agronomy, ISU) for helpful and stimulating discussions during the course of drought stress experiments and gratefully acknowledge the technical advice and instrumentation help by Dr Henry Taber (Department of Horticulture, ISU) for elemental analysis of leaf tissues. We also thank Wayne Shyy and Dr Anania Fessehaie (Seed Science Center, ISU) for their assistance with real time-PCR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Lin, W., Cai, W. et al. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226, 729–740 (2007). https://doi.org/10.1007/s00425-007-0520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0520-4

Keywords

Navigation