Skip to main content
Log in

Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are known to play a major role in maintaining water and hydraulic conductivity balance in the plant system. Numerous studies have showed AQPs execute multi-function throughout plant growth and development, including water transport, nitrogen, carbon, and micronutrient acquisition etc. However, little information on AQPs is known in bamboo. In this study, we present the first genome-wide identification and characterization of AQP genes in moso bamboo (Phyllostachys edulis) using bioinformatics. In total, 26 AQP genes were identified by homologous analysis, which were divided into four groups (PIPs, TIPs, NIPs, and SIPs) based on the phylogenetic analysis. All the genes were located on 26 different scaffolds respectively on basis of the gene mapped to bamboo genome. Evolutionary analysis indicated that Ph. edulis was more close to Oryza sativa than Zea mays in the genetic relationship. Besides, qRT-PCR was used to analyze gene expression profiles, which revealed that AQP genes were expressed constitutively in all the detected tissues, and were all responsive to the environmental cues such as drought, water, and NaCl stresses. This data suggested that AQPs may play fundamental roles in maintaining normal growth and development of bamboo, which would contribute to better understanding for the complex regulation mechanism involved in the fast-growing process of bamboo. Furthermore, the result could provide valuable information for further research on bamboo functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AQP:

Aquaporin

Bp:

Base pair

cDNA:

DNA complementary to RNA

CDS:

Coding DNA sequence

DNase:

Deoxyribonuclease

dNTP:

Deoxyribonucleoside triphosphate

ER:

Endoplasmic reticulum

kDa:

Kilodalton

MW:

Molecular weight

NIP:

Nodulin 26-like intrinsic protein

pI:

Isoelectric point

PIP:

Plasma membrane intrinsic protein

qRT-PCR:

Quantitative real-time PCR

SIP:

Small basic intrinsic protein

TIP:

Tonoplast intrinsic protein

TM:

Transmembrane

XIPs:

Unrecognized X intrinsic proteins

References

  1. Venkatesh J, Yu JW, Park SW (2013) Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol Biochem 73:392–404

    Article  CAS  PubMed  Google Scholar 

  2. Maurel C, Verdoucq L, Luu DT et al (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen MX, Moon S, Jung KH (2013) Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta 238(4):669–681

    Article  CAS  PubMed  Google Scholar 

  4. Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9(1):134

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tao P, Zhong X, Li B et al (2014) Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genome 289(6):1131–1145

    Article  CAS  Google Scholar 

  6. Ariani A, Gepts P (2015) Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.). Mol Genet Genome 290(5):1771–1785

    Article  CAS  Google Scholar 

  7. Johanson U, Karlsson M, Johansson I et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tajkhorshid E, Nollert P, Jensen MØ et al (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296(5567):525–530

    Article  CAS  PubMed  Google Scholar 

  9. Mitani-Ueno N, Yamaji N, Zhao F et al (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62(12):4391–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ayadi M, Cavez D, Miled N et al (2011) Identification and characterization of two plasma membrane aquaporinsin durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol Biochem 49(9):1029–1039

    Article  CAS  PubMed  Google Scholar 

  11. Bansal A, Sankararamakrishnan R (2007) Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct Biol 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  12. Choi WG, Roberts DM (2007) Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 282(33):24209–24218

    Article  CAS  PubMed  Google Scholar 

  13. Peng Z, Lu Y, Li L et al (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45(4):456–461

    Article  CAS  PubMed  Google Scholar 

  14. Cui K, He CY, Zhang JG (2012) Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo. J Prot Res 11(4):2492–2507

    Article  CAS  Google Scholar 

  15. Peng Z, Zhang C, Zhang Y et al (2013) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS ONE 8(11):e78944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eisenbarth DA, Weig AR (2005) Dynamics of aquaporins and water relations during hypocotyl elongation in Ricinus communis L. seedlings. J Exp Bot 56(417):1831–1842

    Article  CAS  PubMed  Google Scholar 

  17. Chaumont F, Barrieu F, Wojcik E et al (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125(3):1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forrest KL, Bhave M (2008) The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Gen 8(2):115–133

    Article  CAS  Google Scholar 

  19. Hove RM, Ziemann M, Bhave M (2015) Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS ONE 10(6):e0128025

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao H, Peng Z, Fei B et al (2014) BambooGDB: a bamboo genome database with functional annotation and an analysis platform. Database 2014: bau006

  21. Peng Z, Lu T, Li L et al (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10:116

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hu B, Jin J, Guo AY et al (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horton P, Park K, Obayashi T et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5(6):e11335

    Article  PubMed  PubMed Central  Google Scholar 

  26. Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  27. Jeong JS, Kim YS, Baek KH et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  29. Fan C, Ma J, Guo Q et al (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS ONE 8(2):e56573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu H, Lv H, Li L et al (2015) Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in moso bamboo (Phyllostachys edulis). PLoS ONE 10(5):e0126657

    Article  PubMed  PubMed Central  Google Scholar 

  31. Silander JA (1985) Microevolution in clonal plants. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven, pp 107–153

    Google Scholar 

  32. Mclellan AJ, Prati D, Kaltz O et al (1997) Structure and analysis of phenotypic and genetic variation in clonal plants. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, pp 185–210

    Google Scholar 

  33. Kammerloher W, Fischer U, Piechottka GP et al (1994) Water channels in the plant plasma membrane cloned by immunoselection from an expression system. Plant J 6(2):187–199

    Article  CAS  PubMed  Google Scholar 

  34. Chaumont F, Barrieu F, Jung R et al (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122(4):1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beitz E, Wu B, Holm LM et al (2006) Point mutations in the aromatic arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia and protons. Proc Natl Acad Sci USA 103(2):269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hub JS, de Groot BL (2008) Mechanisms of selectivity in aquaporins and aquagliceroporins. Proc Natl Acad Sci USA 105(4):1198–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7(2):206

    Article  PubMed  PubMed Central  Google Scholar 

  38. Noronha H, Agasse A, Martins AP et al (2013) The grape aquaporin VvSIP1 transports water across the ER membrane. J Exp Bot 65(4):981–993

    Article  PubMed  Google Scholar 

  39. Ishikawa F, Suga S, Uemura T et al (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579(25):5814–5820

    Article  CAS  PubMed  Google Scholar 

  40. Alexandersson E, Fraysse L, Sjövall-Larsen S et al (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59(3):469–484

    Article  CAS  PubMed  Google Scholar 

  41. Khan K, Agarwal P, Shanware A et al (2015) Heterologous expression of two jatropha aquaporins imparts drought and salt tolerance and improves seed viability in transgenic Arabidopsis thaliana. PLoS ONE 10(6):e0128866

    Article  PubMed  PubMed Central  Google Scholar 

  42. Almeida-Rodriguez AM, Cooke JE, Yeh F et al (2010) Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii × balsamifera clones with different drought resistance strategies. Physiol Plant 140(4):321–333

    Article  CAS  PubMed  Google Scholar 

  43. Schmid M, Davison TS, Henz SR et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506

    Article  CAS  PubMed  Google Scholar 

  44. Schüssler MD, Alexandersson E, Bienert GP et al (2008) The effects of the loss of TIP1;1 and TIP1;2 aquaporins in Arabidopsis thaliana. Plant J 56(5):756–767

    Article  PubMed  Google Scholar 

  45. Beebo A, Thomas D, Der C et al (2009) Life with and without AtTIP1;1, an Arabidopsis aquaporin preferentially localized in the apposing tonoplasts of adjacent vacuoles. Plant Mol Biol 70(1–2):193–209

    Article  CAS  PubMed  Google Scholar 

  46. Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  47. Mueller ND, Gerber JS, Johnston M et al (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254–257

    Article  CAS  PubMed  Google Scholar 

  48. Siefritz F, Tyree MT, Lovisolo C et al (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14(4):869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martre P, Morillon R, Barrieu F et al (2002) Chrispeels, plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130(4):2101–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cui XH, Hao FS, Chen H et al (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121(2):207–214

    Article  CAS  PubMed  Google Scholar 

  51. Hu W, Yuan Q, Wang Y et al (2012) Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol 53(12):2127–2141

    Article  CAS  PubMed  Google Scholar 

  52. Liu C, Fukumoto T, Matsumoto T et al (2013) Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiol Biochem 63:151–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Special Fund for Forest Scientific Research in the Public Welfare from State Forestry Administration of China [No. 201504106] and the Sub-Project of National Science and Technology Support Plan of the twelfth five-year in China [Nos. 2015BAD04B01 and 2015BAD04B03].

Authors’ contributions

HYS and ZMG designed the experiments; HYS and LCL performed experiments; HYS, YFL, and ZMG analyzed data; YFL, LCL, HSZ and HYS contributed reagents/materials/analysis tools; HYS and ZMG wrote the paper. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

The authors Huayu Sun and Lichao Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Li, L., Lou, Y. et al. Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Mol Biol Rep 43, 437–450 (2016). https://doi.org/10.1007/s11033-016-3973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3973-3

Keywords

Navigation