Skip to main content
Log in

Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Grape softwood cuttings of Khoshnaw cultivar were cultured using tissue-culture methods to study the effect of iron nanoparticles and potassium silicate under salinity conditions during the 2015–2016 growing season. The treatments consisted of salinity stress (0, 50, and 100 mM NaCl), nanoparticles of iron (0, 0.08, and 0.8 ppm), and potassium silicate (0, 1, 2 mM). The results also showed that the application of iron nanoparticles and potassium silicate significantly increased the total protein content and reduced proline, enzymatic antioxidant activity and hydrogen peroxide. Salinity stress reduced membrane stability index while increased malondialdehyde content. Increase of membrane stability index and reduction of malondialdehyde content were obtained for 2 mM potassium silicate and 0.8 ppm iron nanoparticle. Iron and potassium silicate were shown to lower the sodium content and increase the potassium content under salinity-stress conditions. The highest ratio of sodium to potassium was observed in plants under salinity conditions (100 mM) treated with neither iron nanoparticles nor potassium silicate; conversely, the lowest ratio was achieved in plants treated with both 0.8 ppm iron nanoparticles with 1 mM and 2 mM potassium silicate under non-stress conditions. These results indicate that the application of micronutrients in stressful conditions is a suitable method to compensate for the negative effects of salinity stress. Tissue culture in this study was shown to be an economically efficient and applicable technique for producing grape softwood cuttings to be used in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadía A, Belkhodja R, Morales F, Abadía J (1999) Effects of salinity on the photosynthetic pigment composition of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. J Plant Physiol 154:392–400

    Article  Google Scholar 

  • Ahad U, Inayatullah M (2013) Challenges to the agricultural development in Iran. Int J Innov Res Dev 2:333–349. ISSN: 2278–0211

  • Ahmad P (2014) Oxidative damage to plants. Academic Press, New York

    Google Scholar 

  • Ahmad R, Tripathi AK, Tripathi P, Singh S, Singh R, Singh RK (2008) Malondialdehyde and protein carbonyl as biomarkers for oxidative stress and disease progression in patients with chronic myeloid leukemia. In vivo 22:525–528

    PubMed  Google Scholar 

  • Amini F, Ehsanpour AA (2005) Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycoersicon esculentum Mill.) cultivars under in vitro salt stress. Am J Biochem Biotechnol 1:204–208

    Article  Google Scholar 

  • Amirjani M (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol 5:350–360

    Article  CAS  Google Scholar 

  • Arslan D, Zencirci N, Etoz M, Ordu B, Bataw S (2016) Bread wheat responds salt stress better than einkorn wheat does during germination. Turk J Agric For 40:783–794

    Article  Google Scholar 

  • Barghchi M, Alderson P (1989) Pistachio (Pistacia vera L.). In: Bajaj YPS (ed) Trees II. Biotechnology in agriculture and forestry, vol 5. Springer, Berlin, Heidelberg pp 68–98

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  • Ben-Hayyim G, Spiegel-Roy P, Neumann H (1985) Relation between ion accumulation of salt-sensitive and isolated stable salt-tolerant cell lines of Citrus aurantium. Plant Physiol 78:144–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjak A, Ercisli S, Vokurka A, Maletic E, Pejic I (2005) Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 44(2):73–77

    CAS  Google Scholar 

  • Bernstein L (1975) Effects of salinity and sodicity on plant growth. Annu Rev Phytopathol 13:295–312

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Lee J (2009) Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem 114:1386–1390

    Article  CAS  Google Scholar 

  • Daub ME (1986) Tissue culture and the selection of resistance to pathogens. Annu Rev Phytopathol 24:159–186

    Article  Google Scholar 

  • David D (1960) The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry. Analyst 85:495–503

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985

    Article  CAS  PubMed  Google Scholar 

  • Dimassi-Theriou K (1998) Response of increasing rates of NaCl or CaCl2 and proline on” Mr. S 2/5”(Prunus cerasifera) peach rootstock cultured in vitro. Adv Hortic Sci 12:169–174

    Google Scholar 

  • Elbotaty EMA (2012) Production of developed grape rootstocks using in vitro mutations. CU Theses

  • Ferreira RR, Fornazier RF, Vitória AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25:327–342

    Article  CAS  Google Scholar 

  • Fisarakis I, Chartzoulakis K, Stavrakas D (2001) Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manag 51:13–27

    Article  Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–120

    Article  PubMed  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) The components of plant tissue culture media I: macro-and micro-nutrients. In: George EF et al (eds) Plant propagation by tissue culture, 3rd edn. Springer, Berlin, pp 65–113

    Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Grattan S, Grieve C (1998) Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  Google Scholar 

  • Gupta R, Wall T, Baxter L (2007) Impact of mineral impurities in solid fuel combustion. Springer, Berlin

    Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell Environ 33:552–565

    Article  CAS  Google Scholar 

  • Hossain MA et al (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:1–19

    Google Scholar 

  • Laspina N, Groppa M, Tomaro M, Benavides M (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Liu F et al (2015) Cloning and function characterization of two dehydroascorbate reductases from Kiwifruit (Actinidia chinensis L.). Plant Mol Biol Rep 34:1–12

    Google Scholar 

  • Maciel R, Sant’Anna G, Dezotti M (2004) Phenol removal from high salinity effluents using Fenton’s reagent and photo-Fenton reactions. Chemosphere 57:711–719

    Article  CAS  PubMed  Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J. https://doi.org/10.1100/2012/491206

    Google Scholar 

  • Miao B-H, Han X-G, Zhang W-H (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot. https://doi.org/10.1093/aob/mcq063

    PubMed Central  Google Scholar 

  • Mohammed A, Alsadon A, Alharbi A, Wahb-allah M, Rahman M (2006) Salinity tolerance of tomato cultivars using in vitro techniques. In: XXVII International horticultural congress-IHC2006: II international symposium on plant genetic resources of horticultural, 760, pp 259–267

  • Molassiotis AN, Sotiropoulos T, Tanou G, Kofidis G, Diamantidis G, Therios I (2006) Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biol Plant 50:61–68

    Article  CAS  Google Scholar 

  • Nadi E, Aynehband A, Mojaddam M (2013) Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of Faba bean (Vicia faba L.). Int J Biosci 3:267–272

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nawaz MF, Gul S, Tanvir MA, Akhtar J, Chaudhary S, Ahmad I (2016) Influence of NaCl-salinity on Pb-uptake behavior and growth of River Red gum tree (Eucalyptus camaldulensis Dehnh.). Turk J Agric For 40:425–432

    Article  Google Scholar 

  • Papadakis IE, Sotiropoulos TE, Therios IN (2007) Mobility of iron and manganese within two citrus genotypes after foliar applications of iron sulfate and manganese sulfate. J Plant Nutr 30:1385–1396

    Article  CAS  Google Scholar 

  • Pick E, Mizel D (1981) Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods 46:211–226

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues F, Duarte H, Domiciano G, Souza C, Korndörfer G, Zambolim L (2009) Foliar application of potassium silicate reduces the intensity of soybean rust. Australas Plant Pathol 38:366–372

    Article  CAS  Google Scholar 

  • Rolli E, Brunoni F, Marieschi M, Torelli A, Ricci A (2015) In vitro micropropagation of the aquatic fern Marsilea quadrifolia L. and genetic stability assessment by RAPD markers. Plant Biosyst 149:7–14

    Article  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Römheld V, Marschner H (1991) Function of micronutrients in plants. Micronutr Agric 4:297–328

    Google Scholar 

  • Sabaghnia N, Janmohammadi M (2015) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes/Wpływ nanocząstek krzemionki na tolerancję zasolenia we wczesnym rozwoju niektórych genotypów soczewicy. Ann UMCS Biol 69:39–55

    Google Scholar 

  • Saed-Moocheshi A, Shekoofa A, Sadeghi H, Pessarakli M (2014) Drought and salt stress mitigation by seed priming with KNO3 and urea in various maize hybrids: an experimental approach based on enhancing antioxidant responses. J Plant Nutr 37:674–689

    Article  CAS  Google Scholar 

  • Saed-Moucheshi A, Shekoofa A, Pessarakli M (2014) Reactive oxygen species (ROS) generation and detoxifying in plants. J Plant Nutr 37:1573–1585

    Article  CAS  Google Scholar 

  • Saed-Moucheshi A, Hasheminasab H, Khaledian Z, Pessarakli M (2015) Exploring morpho-physiological relationships among drought resistance related traits in wheat genotypes using multivariate techniques. J Plant Nutr 38:2077–2095

    Article  CAS  Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164:151–162

    Article  CAS  PubMed  Google Scholar 

  • Shibli RA, Ajlouni M, Obeidat A (2000) Direct regeneration from wild pear (Pyrus syriaca) leaf explants. Adv Hortic Sci 14:12–18

    Google Scholar 

  • Singh S, Sharma H, Goswami A, Datta S, Singh S (2000) In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biol Plant 43:283–286

    Article  CAS  Google Scholar 

  • Sivanesan I, Park SW (2014) The role of silicon in plant tissue culture. Front Plant Sci 5:571–586

    Article  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulos TE, Fotopoulos S, Dimassi KN, Tsirakoglou V (2006) Response of the pear rootstock to boron and salinity in vitro. Biol Plant 50:779–781

    Article  CAS  Google Scholar 

  • Sperotto RA, Boff T, Duarte GL, Fett JP (2008) Increased senescence-associated gene expression and lipid peroxidation induced by iron deficiency in rice roots. Plant Cell Rep 27:183–195

    Article  CAS  PubMed  Google Scholar 

  • Tabart J, Franck T, Kevers C, Dommes J (2015) Effect of polyamines and polyamine precursors on hyperhydricity in micropropagated apple shoots. Plant Cell Tissue Organ Cult (PCTOC) 120:11–18

    Article  CAS  Google Scholar 

  • Tahir MA, Rahmatullah T, Aziz M, Ashraf S, Kanwal MM, Maqsood MA (2006) Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pak J Bot 38:1715–1722

    Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. Sinauer Associates, Incorporated, Sunderland

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ursache-Oprisan M, Focanici E, Creanga D, Caltun O (2011) Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Biotechnol 10:7092

    CAS  Google Scholar 

  • Vinal GW, Lander JJ (1955) Storage batteries. J Electrochem Soc 102:256C–257C

    Article  Google Scholar 

  • Watanabe S, Kojima K, Sasaki S (2000) Effect of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell, Tissue Organ Cult 63:199–206

    Article  CAS  Google Scholar 

  • Yeo A, Yeo M, Flowers S, Flowers T (1990) Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor Appl Genet 79:377–384

    Article  CAS  PubMed  Google Scholar 

  • Yeo A, Flowers S, Rao G, Welfare K, Senanayake N, Flowers T (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell Environ 22:559–565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali-akbar Mozafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozafari, Aa., Ghadakchi asl, A. & Ghaderi, N. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiol Mol Biol Plants 24, 25–35 (2018). https://doi.org/10.1007/s12298-017-0488-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0488-x

Keywords

Navigation