Skip to main content
Log in

Transgenics in groundnut (Arachis hypogaea L.) expressing cry1AcF gene for resistance to Spodoptera litura (F.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Large number of primary transgenic events were generated in groundnut by an Agrobacterium mediated, in planta transformation method to assess the efficacy of cry1AcF against the Spodoptera litura. The amplification of required size fragment of 750 bp with npt II primers and 901 bp with cry1AcF gene primers confirmed the integration of the gene. The expression of the cry gene was ascertained by ELISA in T2 generation, and the maximum concentration of cry protein in transgenic plants reached approximately 0.82 μg/g FW. Further, Southern blot analysis of ten T2 transgenic plants proved that transgene had been integrated in the genome of all the plants and Northern analysis of the same plants demonstrated the active expression of cry1AcF gene. The highest mean % larval mortalities 80.0 and 85.0 with an average mean % larval mortalities 16.25 (n = 369) and 26.0 (n = 80) were recorded in T1 and T2 generations, respectively. Segregation analysis of the selected lines in the T3 generation demonstrated homozygous nature. This clearly proved that though there is considerable improvement in average mean % larval mortality in T2 generation, the cry1AcF gene was effective against S. litura only to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (2000) Non pesticidal management of cotton, pigeonpea and groundnut pests. Progress Report 1999–2000, Centre for World Solidatiry, Secunderabad. p 2

  • Beena MR, Tuli R, Gupta AD, Kirti PB (2008) Transgenic peanut (Arachis hypogaea L.) plants expressing cry1EC and rice chitinase cDNA (Chi 11) exhibit resistance against insect pest Spodoptera litura and fungal pathogen Phaeoisariopsis personata. Trangen Plant J 2:157–164

    Google Scholar 

  • Bosch D, Schipper B, van der Kleij H, de Maagd R, Stiekema WJ (1994) Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnol 12:915–918

    Article  CAS  Google Scholar 

  • Cao J, Zhao JZ, Shelton AM, Earle ED (2002) Broccoli plants pyramided with cry1AC and cry1C Bt gene control diamondback moths resistance to cry1A and cry1AC proteins. Theor Appl Genet 105:258–264

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti SK, Mandaokar AD, Kumar PA, Sharma RP (1998) Synergistic effect of cry1Ac and cry1F delta endotoxins of Bacillus thuringiensis on cotton bollworm, Helicoverpa armigera. Curr Sci 75:663–664

    CAS  Google Scholar 

  • Cheng M, Robert LJ, Xing Z, Li A, Demski JW (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumeraciens. Plant Cell Rep 15:653–657

    Article  CAS  PubMed  Google Scholar 

  • Chumakov MI, Rozhok NA, Velikov VA, Tyrnov VS, Volokhina IV (2006) Agrobacterium mediated in planta transformation of maize via pistil filaments. Russ J Genet 42(8):893–897

    Article  CAS  Google Scholar 

  • Datta K, Baisakh N, Thet KM, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8

    CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  • Greenplate JT, Penn SR, Shappley Z, Oppenhuizen M, Mann J, Reich B, Oshorn J (2000) Bollgard II efficacy : quantification of total lepidopteran activity in a two gene product. Proc Belt-Wide Cotton Conf 2:1041–1043

    Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Basu D, Das S, Ramakrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of cryIA (c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibit development of pod-borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    Article  CAS  Google Scholar 

  • Keshamma E, Rohini S, Rao KS, Madhusudhan B, Udayakumar M (2008) Tissue culture independent in planta transformation strategy: an Agrobacterium tumefaciensmediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272

    CAS  Google Scholar 

  • Kumar AM, Kalpana NR, Rohini S, Girija G, Udayakumar M (2009) Towards crop improvement in capsicum (Capsicum annuum L.): transgenics (uidA: hpt II) by a tissue-culture-independent Agrobacterium-mediated in planta approach. Sci Hortic 119:362–370

    Article  CAS  Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353:815–821

    Article  CAS  PubMed  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breeding 7:85–93

    Article  CAS  Google Scholar 

  • Naimov S, Dukiandjiev S, DeMaagd RA (2003) A hybrid Bacillus thuringiensis deltaendotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57

    Article  CAS  PubMed  Google Scholar 

  • Ramesh S, Nagadhara D, Pasalu IC, Kumari AP, Sarma NP, Reddy VD, Rao KV (2004) Development of stem borer resistant transgenic parental lines involved the production of hybrid rice. J Biotechnol 111:131–141

    Article  CAS  PubMed  Google Scholar 

  • Rao KS, Rohini VK (1999) Agrobacterium-mediated transformation of sunflower (Helianthus annus L.): a simple protocol. Ann Bot 83:347–354

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2000) Transformation of peanut (Arachis hypogaea L.): a non–tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect, Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • Singsit C, Adang MC, Lynch WA, Anderson WA, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cry1Ac gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6:169–176

    Article  CAS  PubMed  Google Scholar 

  • Snedecor GW, Cochran WG (1967) Statistical methods. Oxford and IBH Publishing Co, p 593

  • Supartana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M (2005) Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng 100:391–397

    Article  CAS  PubMed  Google Scholar 

  • Surekha CH, Beena MR, Arundhati A, Singh PK, Tuli R, Gupta AD, Kirti PB (2005) Agrobacterium mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169:1074–1080

    Article  CAS  Google Scholar 

  • Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic Cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025

    Google Scholar 

  • Tiwari S, Mishra DK, Chandrashekar K, Singh PK, Tuli R (2011) Expression of delta-endotoxin cry1EC from wound inducible promoter confers insect protection in peanut (Arachis hypogea L.) plants. Pest Manag Sci 67:137–145

    Article  CAS  PubMed  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Trans Res 6(5):329–336

    Article  CAS  Google Scholar 

  • Winans SC, Kerstetter RA, Nester EW (1988) Transformation regulation of the vir A and vir G genes of Agrobacterium tumefaciens. J Bacteriol 170:4047–4054

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This research was supported by Department of Biotechnology, Ministry of Science and Technology, Government of India. The neonates (larvae) for insect bioassay were supplied by Pest Control (India) Pvt. Ltd., Rajanukunte, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rohini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keshavareddy, G., Rohini, S., Ramu, S.V. et al. Transgenics in groundnut (Arachis hypogaea L.) expressing cry1AcF gene for resistance to Spodoptera litura (F.). Physiol Mol Biol Plants 19, 343–352 (2013). https://doi.org/10.1007/s12298-013-0182-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-013-0182-6

Keywords

Navigation