Skip to main content

Advertisement

Log in

Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurological disorder in which oxidative stress and reactive oxygen species productions are proposed to be involved in its pathogenesis. Despite considerable advancement in Selenium’s (Se) molecular biology and metabolism, we do not know much about the cell type-specific pattern of Se distribution in the brain of PD humans and experimental animals. Although, there is plenty of evidence around the role of Se deficiency in PD’s pathogenesis impacting lipid peroxidation and reducing glutathione (GSH) and glutathione peroxidase (GPX). It has been suggested that Se has an inducible role in selenium-dependent GPX activity in PD animals and humans. However, calcium as a second messenger regulates the neuron cells’ essential activities, but its overloading leads to cellular oxidative stress and apoptosis. Therefore, Se’s antioxidant role can affect calcium signaling and alleviate its complications. There are signs of Se and Selenoproteins incorporation in protecting stress oxidative in various pathways. In conclusion, there is convincing proof for the crucial role of Se and Calcium in PD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Perry G, Nunomura A, Hirai K, Takeda A, Aliev G, Smith MA. Oxidative damage in Alzheimer’s disease: the metabolic dimension. Int J Dev Neurosci. 2000;18(4–5):417–21.

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida S, Inoh S, Asano T, Sano K, Kubota M, Shimazaki H, et al. Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain: lipid peroxidation as a possible cause of postischemic injury. J Neurosurg. 1980;53(3):323–31.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan X, Fu Z, Ji P, Guo L, Al-Ghamdy AO, Alkandiri A, et al. Selenium nanoparticles pre-treatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazole-induced epileptic seizures in mice. Int J Nanomed. 2020;15:6339.

    Article  CAS  Google Scholar 

  4. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat Med. 2004;10(7):2–9.

    Article  CAS  Google Scholar 

  5. Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, et al. Neuroinflammation Induces Neurodegeneration. J Neurol Neurosurg Spine. 2016;1(1):1003.

    PubMed  PubMed Central  Google Scholar 

  6. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83.

    Article  CAS  PubMed  Google Scholar 

  7. Van Den Berge N, Ulusoy A. Animal models of brain-first and body-first Parkinson’s disease. Neurobiol Dis. 2022;163:105599.

    Article  CAS  Google Scholar 

  8. Ekmekci H, Kaptan H. Camptocormia and deep brain stimulation: The interesting overlapping etiologies and the therapeutic role of subthalamic nucleus-deep brain stimulation in Parkinson disease with camptocormia. Surg Neurol Int. 2016;7(Suppl 4):103.

    Google Scholar 

  9. Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet. 2015;31(3):140–9.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng J, Wang M, Wei W, Keller JN, Adhikari B, King JF, et al. Dietary plant lectins appear to be transported from the gut to gain access to and alter dopaminergic neurons of Caenorhabditis elegans, a potential etiology of Parkinson’s disease. Front Nutr. 2016;3:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hoozemans JJ, Scheper W. Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol. 2012;44(8):1295–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.

    Article  CAS  PubMed  Google Scholar 

  13. Forman MS, Lee VM, Trojanowski JQ. ‘Unfolding’pathways in neurodegenerative disease. Trends Neurosci. 2003;26(8):407–10.

    Article  CAS  PubMed  Google Scholar 

  14. De Vos KJ, Grierson AJ, Ackerley S, Miller CC. Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci. 2008;31:151–73.

    Article  PubMed  CAS  Google Scholar 

  15. Calì T, Ottolini D, Brini M. Calcium signaling in Parkinson’s disease. Cell Tissue Res. 2014;357(2):439–54.

    Article  PubMed  CAS  Google Scholar 

  16. Maass F, Michalke B, Willkommen D, Schulte C, Tönges L, Boerger M, et al. Selenium speciation analysis in the cerebrospinal fluid of patients with Parkinson’s disease. J Trace Elem Med Biol. 2020;57:126412.

    Article  CAS  PubMed  Google Scholar 

  17. Pal A. Role of Copper and Selenium in Reproductive Biology: A Brief Update. Biochem Pharmacol (Los Angel). 2015;4(181):2167-0501.1000181.

    Google Scholar 

  18. Chafik A, Essamadi A, Çelik SY, Solak K, Mavi A. Characterization of an interesting selenium-dependent glutathione peroxidase (Se-GPx) protecting cells against environmental stress: The Camelus dromedarius erythrocytes Se-GPx. Biocatal Agric Biotechnol. 2019;18:101000.

    Article  Google Scholar 

  19. Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284(2):723–7.

    Article  CAS  PubMed  Google Scholar 

  20. Donovan J, Copeland PR. Threading the needle: getting selenocysteine into proteins. Antioxid Redox Signal. 2010;12(7):881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gladyshev VN, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA, Burk RF, et al. Selenoprotein gene nomenclature. J Biol Chem. 2016;291(46):24036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Berry MJ. Selenium and selenoproteins in the brain and brain diseases. J Neurochem. 2003;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  23. Solovyev ND. Importance of Selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem. 2015;153:1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Repetto M, Semprine J, Boveris A. Lipid peroxidation: chemical mechanism, biological implications and analytical determination: chapter; 2012.

  25. Halliwell B. Free radicals and other reactive species in disease. Els. 2001:1–9.

  26. Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015;5(2):472–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohshima H. Genetic and epigenetic damage induced by reactive nitrogen species: implications in carcinogenesis. Toxicol Lett. 2003;140:99–104.

    Article  PubMed  CAS  Google Scholar 

  28. Qureshi GA, Parvez SH. Oxidative stress and neurodegenerative disorders: Elsevier; 2007.

  29. Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med. 2003;34(12):1507–16.

    Article  CAS  PubMed  Google Scholar 

  30. Callahan L, She Z, Nosek T. Superoxide, hydroxyl radical, and hydrogen peroxide effects on single-diaphragm fiber contractile apparatus. J Appl Physiol. 2001;90(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  31. Ferguson SK, Hirai DM, Copp SW, Holdsworth CT, Allen JD, Jones AM, et al. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol. 2013;591(2):547–57.

    Article  CAS  PubMed  Google Scholar 

  32. Zabel MK. Microglia and Complement in Alzheimer’s Disease with Cerebral Amyloid Angiopathy. 2013.

  33. Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol. 2010;229(1–2):26–50.

    Article  CAS  PubMed  Google Scholar 

  34. Maksoud MJE, Tellios V, An D, Xiang YY, Lu WY. Nitric oxide upregulates microglia phagocytosis and increases transient receptor potential vanilloid type 2 channel expression on the plasma membrane. Glia. 2019;67(12):2294–311.

    Article  PubMed  Google Scholar 

  35. Alam Q, Zubair Alam M, Mushtaq G, Damanhouri A, Rasool G, Amjad Kamal M. M, et al. Inflammatory process in Alzheimer’s and Parkinson’s diseases: central role of cytokines. Curr Pharm Design. 2016;22(5):541–8.

    Article  CAS  Google Scholar 

  36. Edelstein CL, Ling H, Schrier RW. The nature of renal cell injury. Kidney Int. 1997;51(5):1341–51.

    Article  CAS  PubMed  Google Scholar 

  37. Sorg O. Oxidative stress: a theoretical model or a biological reality? CR Biol. 2004;327(7):649–62.

    Article  CAS  Google Scholar 

  38. Sorg O, Horn TF, Yu N, Gruol DL, Bloom FE. Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes. Mol Med. 1997;3(7):431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beckman JS, Chen J, Crow JP, Zu Ye Y. Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Progress in brain research. 103: Elsevier; 1994. p. 371 – 80.

  40. Li J, Su J, Li W, Liu W, Altura BT, Altura BM. Peroxynitrite induces apoptosis in canine cerebral vascular muscle cells: possible relation to neurodegenerative diseases and strokes. Neurosci Lett. 2003;350(3):173–7.

    Article  CAS  PubMed  Google Scholar 

  41. Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6(3):337–50.

    Article  CAS  PubMed  Google Scholar 

  42. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015;9:91.

    PubMed  PubMed Central  Google Scholar 

  43. Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med. 2013;62:13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18(6):e13031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ikeda H, Markey CJ, Markey SP. Search for neurotoxins structurally related to 1-methyl-4-phenylpyridine (MPP+) in the pathogenesis of Parkinson’s disease. Brain Res. 1992;575(2):285–98.

    Article  CAS  PubMed  Google Scholar 

  46. Lestienne P, Nelson J, Riederer P, Jellinger K, Reichmann H. Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J Neurochem. 1990;55(5):1810–2.

    Article  CAS  PubMed  Google Scholar 

  47. Franco R, Cidlowski JA. Glutathione efflux and cell death. Antioxid Redox Signal. 2012;17(12):1694–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 2004;58(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  49. Sas K, Szabó E, Vécsei L. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules. 2018;23(1):191.

    Article  PubMed Central  CAS  Google Scholar 

  50. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12(5):913–22.

    Article  CAS  PubMed  Google Scholar 

  51. Caballero B, Sherman SJ, Falk T. Insights into the mechanisms involved in protective effects of VEGF-B in dopaminergic neurons. Parkinson’s Disease. 2017;2017.

  52. Chinta SJ, Poksay KS, Kaundinya G, Hart M, Bredesen DE, Andersen JK, et al. Endoplasmic Reticulum Stress–Induced Cell Death in Dopaminergic Cells: Effect of Resveratrol. J Mol Neurosci. 2009;39(1–2):157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chinta SJ, Rane A, Poksay KS, Bredesen DE, Andersen JK, Rao RV. Coupling endoplasmic reticulum stress to the cell death program in dopaminergic cells: effect of paraquat. Neuromol Med. 2008;10(4):333–42.

    Article  CAS  Google Scholar 

  54. Jenner P. Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov disorders: official J Mov Disorder Soc. 1998;13:24.

    Google Scholar 

  55. Rizzuto R, Giorgi C, Romagnoli A, Pinton P. Ca2 + signaling, mitochondria and cell death. Curr Mol Med. 2008;8(2):119–30.

    Article  PubMed  Google Scholar 

  56. Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci. 2014;71(15):2787–814.

    Article  CAS  PubMed  Google Scholar 

  57. Rusakov D, Fine A. Extracellular Ca2 + depletion contributes to fast activity-dependent modulation of synaptic transmission in the brain. Neuron. 2003;37(2):287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Büeler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol. 2009;218(2):235–46.

    Article  PubMed  CAS  Google Scholar 

  59. Schapira A, Cooper J. Mitochondrial function in neurodegeneration and ageing. Mutat Research/DNAging. 1992;275(3–6):133–43.

    Article  CAS  Google Scholar 

  60. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience. 2011;198:221–31.

    Article  CAS  PubMed  Google Scholar 

  61. Hammond C. Ionic gradients, membrane potential and ionic currents. Cell Mol Neurophysiol. 2015:39–54.

  62. Manzanares D, Gonzalez C, Ivonnet P, Chen R-S, Valencia-Gattas M, Conner GE, et al. Functional apical large conductance, Ca2+-activated, and voltage-dependent K + channels are required for maintenance of airway surface liquid volume. J Biol Chem. 2011;286(22):19830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P. L-type Ca2 + channels in heart and brain. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling. 2014;3(2):15–38.

    CAS  PubMed  Google Scholar 

  64. Jefri M, Bell S, Peng H, Hettige N, Maussion G, Soubannier V, et al. Stimulation of L-type calcium channels increases tyrosine hydroxylase and dopamine in ventral midbrain cells induced from somatic cells. Stem Cells Translational Medicine. 2020;9(6):697–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scorziello A, Borzacchiello D, Sisalli MJ, Di Martino R, Morelli M, Feliciello A. Mitochondrial Homeostasis and Signaling in Parkinson’s Disease. Front Aging Neurosci. 2020;12:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Callewaert G, D’hooge P, Ma T-Y, Del Vecchio M, Van Eyck V, Franssens V, et al. Decreased Vacuolar Ca2 + Storage and Disrupted Vesicle Trafficking Underlie Alpha-Synuclein-Induced Ca2 + Dysregulation in S. cerevisiae. Front Genet. 2020;11:266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Calì T, Ottolini D, Negro A, Brini M. α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem. 2012;287(22):17914–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Forman HJ, Fukuto JM, Torres M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiology-Cell Physiol. 2004;287(2):C246-C56.

    Article  Google Scholar 

  69. Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 2009;77(8):1303–15.

    Article  CAS  PubMed  Google Scholar 

  70. Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol. 2002;38(10):713–21.

    Article  CAS  PubMed  Google Scholar 

  71. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, et al. Mitochondrial Ca2 + and apoptosis. Cell Calcium. 2012;52(1):36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haug A, Graham RD, Christophersen OA, Lyons GH. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Disease. 2007;19(4):209–28.

    Article  CAS  Google Scholar 

  73. Eiche E, Bardelli F, Nothstein A, Charlet L, Göttlicher J, Steininger R, et al. Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Sci Total Environ. 2015;505:952–61.

    Article  CAS  PubMed  Google Scholar 

  74. Lyons M, Papazyan T, Surai P. Selenium in food chain and animal nutrition: lessons from nature-review. Asian-Australasian J Anim Sci. 2007;20(7):1135–55.

    Article  CAS  Google Scholar 

  75. Wang C, Lovell RT. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture. 1997;152(1–4):223–34.

    Article  CAS  Google Scholar 

  76. Dumont E, Vanhaecke F, Cornelis R. Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem. 2006;385(7):1304–23.

    Article  CAS  PubMed  Google Scholar 

  77. Foster SJ, Kraus RJ, Ganther HE. Formation of dimethyl selenide and trimethylselenonium from selenobetaine in the rat. Arch Biochem Biophys. 1986;247(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  78. Steinbrenner H, Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: Implications for disorders in the central nervous system. Arch Biochem Biophys. 2013;536(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  79. Höck A, Demmel U, Schicha H, Kasperek K, Feinendegen L. Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, Selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain. 1975;98(1):49–64.

    Article  PubMed  Google Scholar 

  80. Ejima A, Watanabe C, Koyama H, Matsuno K, Satoh H. Determination of Selenium in the human brain by graphite furnace atomic absorption spectrometry. Biol Trace Elem Res. 1996;54(1):9–21.

    Article  CAS  PubMed  Google Scholar 

  81. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(6):1634–58.

    Article  CAS  PubMed  Google Scholar 

  82. Lee M-O, Jeon H, Son M-Y, Lee SC, Cho YS. Clump-passaging-based efficient 3D culture of human pluripotent stem cells under chemically defined conditions. Biochem Biophys Res Commun. 2017;493(1):723–30.

    Article  CAS  PubMed  Google Scholar 

  83. Tang J-Y, He A-H, Jia G, Liu G-M, Chen X-L, Cai J-Y, et al. Protective Effect of Selenoprotein X Against Oxidative Stress-Induced Cell Apoptosis in Human Hepatocyte (LO2) Cells via the p38 Pathway. Biol Trace Elem Res. 2018;181(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  84. ELLWANGER JH, FRANKE SIR, BORDIN DL, HENRIQUES PRÁD. JAP. Biological functions of Selenium and its potential influence on Parkinson’s disease. Anais da Academia Brasileira de Ciências. 2016;88:1655–74.

    Article  CAS  PubMed  Google Scholar 

  85. Maass F, Michalke B, Willkommen D, Leha A, Schulte C, Tönges L, et al. Elemental fingerprint: Reassessment of a cerebrospinal fluid biomarker for Parkinson’s disease. Neurobiol Dis. 2020;134:104677.

    Article  CAS  PubMed  Google Scholar 

  86. Sun H. Association of soil selenium, strontium, and magnesium concentrations with Parkinson’s disease mortality rates in the USA. Environ Geochem Health. 2018;40(1):349–57.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang X, Liu R-P, Cheng W-H, Zhu J-H. Prioritized brain selenium retention and selenoprotein expression: Nutritional insights into Parkinson’s disease. Mech Ageing Dev. 2019;180:89–96.

    Article  CAS  PubMed  Google Scholar 

  88. Gellein K, Syversen T, Steinnes E, Nilsen TIL, Dahl OP, Mitrovic S, et al. Trace elements in serum from patients with Parkinson’s disease — a prospective case-control study: The Nord-Trøndelag Health Study (HUNT). Brain Res. 2008;1219:111–5.

    Article  CAS  PubMed  Google Scholar 

  89. Maass F, Michalke B, Leha A, Boerger M, Zerr I, Koch J-C, et al. Elemental fingerprint as a cerebrospinal fluid biomarker for the diagnosis of Parkinson’s disease. J Neurochem. 2018;145(4):342–51.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao H-W, Lin J, Wang X-B, Cheng X, Wang J-Y, Hu B-L, et al. Assessing plasma levels of Selenium, copper, iron and zinc in patients of Parkinson’s disease. PloS one. 2013;8(12).

  91. Shahar A, Patel KV, Semba RD, Bandinelli S, Shahar DR, Ferrucci L, et al. Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord. 2010;25(12):1909–15.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Battin EE, Brumaghim JL. Antioxidant Activity of Sulfur and Selenium: A Review of Reactive Oxygen Species Scavenging, Glutathione Peroxidase, and Metal-Binding Antioxidant Mechanisms. Cell Biochem Biophys. 2009;55(1):1–23.

    Article  CAS  PubMed  Google Scholar 

  93. Arthur JR. The glutathione peroxidases. Cell Mol Life Sci CMLS. 2001;57(13):1825–35.

    Article  Google Scholar 

  94. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  95. Chow CK, Tappel AL. Response of Glutathione Peroxidase to Dietary Selenium in Rats. J Nutr. 1974;104(4):444–51.

    Article  CAS  PubMed  Google Scholar 

  96. Kirana AN, Prafiantini E, Hardiany NS. Correlation Between Age, Body Mass Index, And Blood Selenium Level with Glutathione Peroxidase Activity Among Elderly in South Jakarta. 2020. 2020;4(2):5.

  97. ZACHARA BA, MIKOLAJCZAK J. TRAFIKOWSKA U. Effect of Various Dietary Selenium (Se) Intakes on Tissue Se Levels and Glutathione Peroxidase Activities in Lambs. J Vet Med Ser A. 1993;40(1-10):310–8.

    Article  CAS  Google Scholar 

  98. Nazıroğlu M, Çiğ B, Özgül C. Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2 + influx in dorsal root ganglion neurons of mice: Role of TRPV1 channels. Neuroscience. 2013;242:151–60.

    Article  PubMed  CAS  Google Scholar 

  99. Özgül C, Nazıroğlu M. TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2 + influx in rat dorsal root ganglion. Physiol Behav. 2012;106(2):122–8.

    Article  PubMed  CAS  Google Scholar 

  100. Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013;17(8):958–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mukherjee SB, Das M, Sudhandiran G, Shaha C. Increase in Cytosolic Ca2 + Levels through the Activation of Non-selective Cation Channels Induced by Oxidative Stress Causes Mitochondrial Depolarization Leading to Apoptosis-like Death in Leishmania donovaniPromastigotes. J Biol Chem. 2002;277(27):24717–27.

    Article  CAS  PubMed  Google Scholar 

  102. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. Mitochondrial reactive oxygen species and Ca2 + signaling. Am J Physiology-Cell Physiol. 2006;291(5):C1082-C8.

    Article  CAS  Google Scholar 

  103. Demelash A, Karlsson JO, Nilsson M, Björkman U. Selenium has a protective role in caspase-3-dependent apoptosis induced by H2O2 in primary cultured pig thyrocytes. Eur J Endocrinol. 2004;150(6):841–9.

    Article  CAS  PubMed  Google Scholar 

  104. Hasani M, Djalalinia S, Khazdooz M, Asayesh H, Zarei M, Gorabi AM, et al. Effect of selenium supplementation on antioxidant markers: a systematic review and meta-analysis of randomized controlled trials. Hormones. 2019;18(4):451–62.

    Article  PubMed  Google Scholar 

  105. Zafar KS, Siddiqui A, Sayeed I, Ahmad M, Salim S, Islam F. Dose-dependent protective effect of Selenium in rat model of Parkinson’s disease: neurobehavioral and neurochemical evidences. J Neurochem. 2003;84(3):438–46.

    Article  CAS  PubMed  Google Scholar 

  106. Khan HA. Selenium partially reverses the depletion of striatal dopamine and its metabolites in MPTP-treated C57BL mice. Neurochem Int. 2010;57(5):489–91.

    Article  CAS  PubMed  Google Scholar 

  107. Ellwanger JH, Molz P, Dallemole DR, Pereira dos Santos A, Müller TE, Cappelletti L, et al. Selenium reduces bradykinesia and DNA damage in a rat model of Parkinson’s disease. Nutrition. 2015;31(2):359–65.

    Article  CAS  PubMed  Google Scholar 

  108. Tian P, Zhang L, Xu S, Li L, Wang W, Chen YD. S, et al. Selenite benefits embryonic stem cells therapy in Parkinson’s disease. Curr Mol Med. 2012;12(8):1005–14.

    Article  CAS  PubMed  Google Scholar 

  109. Hassan W, Oliveira S, Noreen C, Kamdem HP, Nogueira JW, Rocha CBT. J. Organoselenium compounds as potential neuroprotective therapeutic agents. Curr Org Chem. 2016;20(2):218–31.

    Article  CAS  Google Scholar 

  110. Miorelli ST, Rosa RM, Moura DJ, Rocha JC, Carneiro Lobo LA, Pêgas Henriques JA, et al. Antioxidant and anti-mutagenic effects of ebselen in yeast and in cultured mammalian V79 cells. Mutagenesis. 2008;23(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  111. Zeece M. Chapter Five - Vitamins and minerals. In: Zeece M, editor. Introduction to the Chemistry of Food. Academic Press; 2020. pp. 163–212.

  112. Burk RF, Hill KE. Selenoprotein P—Expression, functions, and roles in mammals. Biochimica et Biophysica Acta (BBA) -. Gen Subj. 2009;1790(11):1441–7.

    Article  CAS  Google Scholar 

  113. Hirsch EC, Hunot S, Damier P, Faucheux B. Glial cells and inflammation in parkinson’s disease: A role in neurodegeneration? Ann Neurol. 1998;44(S1):115-S20.

    Article  Google Scholar 

  114. Zhang X, Ye Y-L, Zhu H, Sun S-N, Zheng J, Fan H-H, et al. Selenotranscriptomic Analyses Identify Signature Selenoproteins in Brain Regions in a Mouse Model of Parkinson’s Disease. PLoS ONE. 2016;11(9):e0163372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Pitts MW, Byrns CN, Ogawa-Wong AN, Kremer P, Berry MJ. Selenoproteins in Nervous System Development and Function. Biol Trace Elem Res. 2014;161(3):231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu Z, Jing Y, Yin J, Mu J, Yao T, Gao L. Downregulation of thioredoxin reductase 1 expression in the substantia nigra pars compacta of Parkinson’s disease mice. Neural Regen Res. 2013;8(35):3275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Nowak JZ. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Rep. 2013;65(2):288–304.

    Article  CAS  PubMed  Google Scholar 

  118. Whanger PD. Selenium and the Brain: A Review. Nutr Neurosci. 2001;4(2):81–97.

    Article  CAS  PubMed  Google Scholar 

  119. Power JH, Blumbergs PC. Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol. 2009;117(1):63–73.

    Article  CAS  PubMed  Google Scholar 

  120. Yang MS, Chan HW, Yu LC. Glutathione peroxidase and glutathione reductase activities are partially responsible for determining the susceptibility of cells to oxidative stress. Toxicology. 2006;226(2):126–30.

    Article  CAS  PubMed  Google Scholar 

  121. Bensadoun JC, Mirochnitchenko O, Inouye M, Aebischer P, Zurn AD. Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice. Eur J Neurosci. 1998;10(10):3231–6.

    Article  CAS  PubMed  Google Scholar 

  122. Cheng W-H, Fu YX, Porres JM, Ross DA, Lei XG. Selenium-dependent cellular glutathione peroxidase protects mice against a pro-oxidant-induced oxidation of NADPH, NADH, lipids, and protein. FASEB J. 1999;13(11):1467–75.

    Article  CAS  PubMed  Google Scholar 

  123. Reczek CR, Birsoy K, Kong H, Martínez-Reyes I, Wang T, Gao P, et al. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat Chem Biol. 2017;13(12):1274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Klivenyi P, Andreassen OA, Ferrante RJ, Dedeoglu A, Mueller G, Lancelot E, et al. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J neuroscience: official J Soc Neurosci. 2000;20(1):1–7.

    Article  CAS  Google Scholar 

  125. Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52.

    Article  CAS  PubMed  Google Scholar 

  126. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172(3):409 – 22.e21.

    Article  CAS  PubMed  Google Scholar 

  127. Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV, Miki T, et al. Glutathione Peroxidase 4 is associated with Neuromelanin in Substantia Nigra and Dystrophic Axons in Putamen of Parkinson’s brain. Mol Neurodegeneration. 2011;6(1):8.

    Article  CAS  Google Scholar 

  128. van der Brug MP, Blackinton J, Chandran J, Hao LY, Lal A, Mazan-Mamczarz K, et al. RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc Natl Acad Sci USA. 2008;105(29):10244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hauser DN, Dukes AA, Mortimer AD, Hastings TG. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med. 2013;65:419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang X, Tang X, Wang M, Zhang W, Zhou B, Wang Y. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation. J Photochem Photobiol B. 2017;173:360–7.

    Article  CAS  PubMed  Google Scholar 

  131. Harding SA, Oh SH, Roberts DM. Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J. 1997;16(6):1137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burk RF, Hill KE, Motley AK. Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J Nutr. 2003;133(5):1517S-20S.

    Article  PubMed  Google Scholar 

  133. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, et al. Characterization of mammalian selenoproteomes. Science. 2003;300(5624):1439–43.

    Article  CAS  PubMed  Google Scholar 

  134. Papp LV, Holmgren A, Khanna KK. Selenium and selenoproteins in health and disease. Antioxid Redox Signal. 2010;12(7):793–5.

    Article  CAS  PubMed  Google Scholar 

  135. Klotz L-O, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol. 2015;6:51–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Manolopoulos K, Klotz L, Korsten P, Bornstein S, Barthel A. Linking Alzheimer’s disease to insulin resistance: the FoxO response to oxidative stress. Mol Psychiatry. 2010;15(11):1046.

    Article  CAS  PubMed  Google Scholar 

  137. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt Jr PIH. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016;473(24):4527–50.

    Article  CAS  PubMed  Google Scholar 

  138. Nho RS, Hergert P. FoxO3a and disease progression. World J Biol Chem. 2014;5(3):346.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lombard DB, Schwer B, Alt FW, Mostoslavsky R. SIRT6 in DNA repair, metabolism and ageing. J Intern Med. 2008;263(2):128–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shalini S, Dorstyn L, Wilson C, Puccini J, Ho L, Kumar S. Impaired antioxidant defence and accumulation of oxidative stress in caspase-2-deficient mice. Cell Death Differ. 2012;19(8):1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tokarz P, Kaarniranta K, Blasiak J. Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes. Eur J Pharmacol. 2016;776:167–75.

    Article  CAS  PubMed  Google Scholar 

  142. Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer. 2005;5(12):921.

    Article  CAS  PubMed  Google Scholar 

  143. Bondy CA, Cheng CM. Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol. 2004;490(1–3):25–31.

    Article  CAS  PubMed  Google Scholar 

  144. Dick O, Bading H. Synaptic Activity and Nuclear Calcium Signaling Protect Hippocampal Neurons from Death Signal-associated Nuclear Translocation of FoxO3a Induced by Extrasynaptic N-Methyl-d-aspartate Receptors*. J Biol Chem. 2010;285(25):19354–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schreibelt G, Kooij G, Reijerkerk A, Van Doorn R, Gringhuis SI, Van Der Pol S, et al. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J. 2007;21(13):3666–76.

    Article  CAS  PubMed  Google Scholar 

  146. Oh H-M, Yu C-R, Dambuza I, Marrero B, Egwuagu CE. STAT3 protein interacts with Class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4 + T cells. J Biol Chem. 2012;287(36):30436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Barthel A, Klotz L-O. Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biol Chem. 2005;386(3):207–16.

    Article  CAS  PubMed  Google Scholar 

  148. Estevez AO, Morgan KL, Szewczyk NJ, Gems D, Estevez M. The neurodegenerative effects of Selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. Neurotoxicology. 2014;41:28–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tarrado-Castellarnau M, Cortés R, Zanuy M, Tarragó-Celada J, Polat IH, Hill R, et al. Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition. Pharmacol Res. 2015;102:218–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pinto A, Speckmann B, Heisler M, Sies H, Steinbrenner H. Delaying of insulin signal transduction in skeletal muscle cells by selenium compounds. J Inorg Biochem. 2011;105(6):812–20.

    Article  CAS  PubMed  Google Scholar 

  151. Wang X, Zhang W, Chen H, Liao N, Wang Z, Zhang X, et al. High Selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett. 2014;224(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  152. Pitts MW, Raman AV, Hashimoto AC, Todorovic C, Nichols RA, Berry MJ. Deletion of selenoprotein P results in impaired function of parvalbumin interneurons and alterations in fear learning and sensorimotor gating. Neuroscience. 2012;208:58–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Isaac Hashemy MD-PhD..

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salaramoli, S., Joshaghani, H. & Hashemy, S.I. Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease. Ind J Clin Biochem 37, 257–266 (2022). https://doi.org/10.1007/s12291-022-01031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01031-1

Keywords

Navigation