Skip to main content
Log in

Coupling Endoplasmic Reticulum Stress to the Cell Death Program in Dopaminergic Cells: Effect of Paraquat

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) features oxidative stress and accumulation of misfolded (unfolded, alternatively folded, or mutant) proteins with associated loss of dopaminergic neurons. Oxidative stress and the accumulated misfolded proteins elicit cellular responses that include an endoplasmic reticulum (ER) stress response that may protect cells against the toxic buildup of misfolded proteins. Chronic ER stress and accumulation of misfolded proteins in excessive amounts, however, overwhelm the cellular ‘quality control’ system and impair the protective mechanisms designed to promote correct folding and degrade faulty proteins, ultimately leading to organelle dysfunction and neuronal cell death. Paraquat belongs to a class of bipyridyl herbicides and triggers oxidative stress and dopaminergic cell death. Epidemiological studies suggest an increased risk for developing PD following chronic exposure to paraquat. The present study was carried out to determine the role of paraquat in triggering cellular stress particularly ER stress and to elucidate the pathways that couple ER stress to dopaminergic cell death. We demonstrate that paraquat triggers ER stress, cell dysfunction, and dopaminergic cell death. p23, a small co-chaperone protein, is cleaved during ER stress-induced cell death triggered by paraquat and blockage of the caspase cleavage site of p23 was associated with decreased cell death. Paraquat also inhibits proteasomal activity that may further trigger accumulation of misfolded proteins resulting in ER stress. Our results indicate a protective role for p23 in PD-related programmed cell death. The data also underscore the involvement of ER, caspases, and the proteasomal system in ER stress-induced cell death process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

Pcd:

Programmed cell death

eIF2α:

Eukaryotic initiation factor-2 alpha

GRP:

Glucose regulated protein

PD:

Parkinson’s disease (PD)

References

  • Adams, F. S., La Rosa, F. G., Kumar, S., Edwards-Prasad, J., Kentroti, S., Vernadakis, A., et al. (1996). Characterization and transplantation of two neuronal cell lines with dopaminergic properties. Neurochemical Research, 21, 619–627. doi:10.1007/BF02527762.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J. K. (2000). What causes the build-up of ubiquitin-containing inclusions in Parkinson’s disease? Mechanisms of Ageing and Development, 118, 15–22. doi:10.1016/S0047-6374(00)00150-0.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J. K. (2003). Paraquat and iron exposure as possible synergistic environmental risk factors in Parkinson’s disease. Neurotoxic Research, 5, 307–313.

    Article  Google Scholar 

  • Andersen, J. K. (2004). Oxidative stress in neurodegeneration: Cause or consequence? Nature Medicine, 10 Suppl, S18–S25. doi:10.1038/nrn1434.

    PubMed  Google Scholar 

  • Bose, S., Weikl, T., Bugl, H., & Buchner, J. (1996). Chaperone function of Hsp90-associated proteins. Science, 274, 1715–1717. doi:10.1126/science.274.5293.1715.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, M., Bryant, K. F., Jousse, C., Long, K., Harding, H. P., Scheuner, D., et al. (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science, 307, 935–939. doi:10.1126/science.1101902.

    Article  PubMed  CAS  Google Scholar 

  • Bredesen, D. E., Rao, R. V., & Mehlen, P. (2006). Cell death in the nervous system. Nature, 443, 796–802. doi:10.1038/nature05293.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K. T., Goldberg, A. L., & Nigam, S. K. (1997). Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. Journal of Biological Chemistry, 272, 9086–9092. doi:10.1074/jbc.272.14.9086.

    Article  PubMed  CAS  Google Scholar 

  • Caserta, T. M., Smith, A. N., Gultice, A. D., Reedy, M. A., & Brown, T. L. (2003). Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis, 8, 345–352. doi:10.1023/A:1024116916932.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, E. H., Kirsch, D. G., Clem, R. J., Ravi, R., Kastan, M. B., Bedi, A., et al. (1997). Conversion of Bcl-2 to a Bax-like death effector by caspases. Science, 278, 1966–1968. doi:10.1126/science.278.5345.1966.

    Article  PubMed  CAS  Google Scholar 

  • Chinta, S. J., & Andersen, J. K. (2005). Dopaminergic neurons. International Journal of Biochemistry and Cell Biology, 37, 942–946. doi:10.1016/j.biocel.2004.09.009.

    Article  PubMed  CAS  Google Scholar 

  • Chinta, S. J., & Andersen, J. K. (2006). Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: Implications for Parkinson’s disease. Free Radical Biology and Medicine, 41, 1442–1448. doi:10.1016/j.freeradbiomed.2006.08.002.

    Article  PubMed  CAS  Google Scholar 

  • Chinta, S. J., Kumar, J. M., Zhang, H., Forman, H. J., & Andersen, J. K. (2006). Up-regulation of gamma-glutamyl transpeptidase activity following glutathione depletion has a compensatory rather than an inhibitory effect on mitochondrial complex I activity: Implications for Parkinson’s disease. Free Radical Biology and Medicine, 40, 1557–1563. doi:10.1016/j.freeradbiomed.2005.12.023.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson, E. D., Rosa, F. G., Edwards-Prasad, J., Weiland, D. A., Witta, S. E., Freed, C. R., et al. (1998). Improvement of neurological deficits in 6-hydroxydopamine-lesioned rats after transplantation with allogeneic simian virus 40 large tumor antigen gene-induced immortalized dopamine cells. Proc Natl Acad Sci USA, 95, 1265–1270. doi:10.1073/pnas.95.3.1265.

    Article  PubMed  CAS  Google Scholar 

  • Conn, K. J., Gao, W., McKee, A., Lan, M. S., Ullman, M. D., Eisenhauer, P. B., et al. (2004). Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson’s disease and Lewy body pathology. Brain Research, 1022, 164–172. doi:10.1016/j.brainres.2004.07.026.

    Article  PubMed  CAS  Google Scholar 

  • Conway, K. A., Harper, J. D., & Lansbury, P. T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nature Medicine, 4, 1318–1320. doi:10.1038/3311.

    Article  PubMed  CAS  Google Scholar 

  • Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Harper, J. D., Williamson, R. E., et al. (2000). Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Annals of the New York Academy of Sciences, 920, 42–45.

    PubMed  CAS  Google Scholar 

  • Danielson, S. R., & Andersen, J. K. (2008). Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radical Biology and Medicine, 44, 1789–1794.

    Article  CAS  Google Scholar 

  • Dursun, B., He, Z., Somerset, H., Oh, D. J., Faubel, S., & Edelstein, C. L. (2006). Caspases and calpain are independent mediators of cisplatin-induced endothelial cell necrosis. American Journal of Physiology Renal Physiology, 291, F578–F587.

    Article  PubMed  CAS  Google Scholar 

  • Fei, Q., McCormack, A. L., Di Monte, D. A., & Ethell, D. W. (2008). Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. Journal of Biological Chemistry, 283, 3357–3364. doi:10.1074/jbc.M708451200.

    Article  PubMed  CAS  Google Scholar 

  • Felts, S. J., & Toft, D. O. (2003). p23, a simple protein with complex activities. Cell Stress Chaperones, 8, 108–113. doi:10.1379/1466-1268(2003)008<0108:PASPWC>2.0.CO;2.

    Article  PubMed  CAS  Google Scholar 

  • Forman, M. S., Lee, V. M., & Trojanowski, J. Q. (2003). ‘Unfolding’ pathways in neurodegenerative disease. Trends in Neurosciences, 26, 407–410. doi:10.1016/S0166-2236(03)00197-8.

    Article  PubMed  CAS  Google Scholar 

  • Fribley, A., & Wang, C. Y. (2006). Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biology & Therapy, 5, 745–748.

    CAS  Google Scholar 

  • Harding, H. P., Calfon, M., Urano, F., Novoa, I., & Ron, D. (2002). Transcriptional and translational control in the Mammalian unfolded protein response. Annual Review of Cell and Developmental Biology, 18, 575–599. doi:10.1146/annurev.cellbio.18.011402.160624.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, M., Rockenstein, E., Crews, L., & Masliah, E. (2003). Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Medicine, 4, 21–36. doi:10.1385/NMM:4:1-2:21.

    Article  PubMed  CAS  Google Scholar 

  • Holtz, W. A., & O’Malley, K. L. (2003). Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. Journal of Biological Chemistry, 278, 19367–19377. doi:10.1074/jbc.M211821200.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, Y., Waxman, S., & Germain, D. (2007). Targeting the ubiquitin-proteasome pathway in cancer therapy. Anticancer Agents in Medicinal Chemistry, 7, 359–365. doi:10.2174/187152007780618180.

    Article  CAS  Google Scholar 

  • Johnson, J. L., Beito, T. G., Krco, C. J., & Toft, D. O. (1994). Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Molecular and Cellular Biology, 14, 1956–1963.

    PubMed  CAS  Google Scholar 

  • Johnson, J. L., & Toft, D. O. (1994). A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. Journal of Biological Chemistry, 269, 24989–24993.

    PubMed  CAS  Google Scholar 

  • Kaur, D., Peng, J., Chinta, S. J., Rajagopalan, S., Di Monte, D. A., Cherny, R. A., et al. (2007). Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiology of Aging, 28, 907–913. doi:10.1016/j.neurobiolaging.2006.04.003.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, Y., Inden, M., Miyamura, A., Kakimura, J., Taniguchi, T., & Shimohama, S. (2002). Possible involvement of both mitochondria- and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neuroscience Letters, 333, 25–28. doi:10.1016/S0304-3940(02)00964-3.

    Article  PubMed  CAS  Google Scholar 

  • Kopito, R. R. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology, 10, 524–530. doi:10.1016/S0962-8924(00)01852-3.

    Article  PubMed  CAS  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., et al. (1998). Ala30Pro mutation in the gene encoding a-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108. doi:10.1038/ng0298-106.

    Article  PubMed  CAS  Google Scholar 

  • Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L., & Pickart, C. M. (2002). A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature, 416, 763–767. doi:10.1038/416763a.

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., & Earnshaw, W. C. (1994). Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature, 371, 346–347. doi:10.1038/371346a0.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Zhu, H., Xu, C. J., & Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94, 491–501. doi:10.1016/S0092-8674(00)81590-1.

    Article  PubMed  CAS  Google Scholar 

  • Li, L. J., Li, X., Ferrario, A., Rucker, N., Liu, E. S., Wong, S., et al. (1992). Establishment of a Chinese hamster ovary cell line that expresses grp78 antisense transcripts and suppresses A23187 induction of both GRP78 and GRP94. Journal of Cellular Physiology, 153, 575–582. doi:10.1002/jcp.1041530319.

    Article  PubMed  CAS  Google Scholar 

  • Lindholm, D., Wootz, H., & Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death and Differentiation, 13, 385–392. doi:10.1038/sj.cdd.4401778.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Bowes, R. C., van de Water, B., 3rd, Sillence, C., Nagelkerke, J. F., & Stevens, J. L. (1997). Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. Journal of Biological Chemistry, 272, 21751–21759. doi:10.1074/jbc.272.35.21751.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Miller, E., van de Water, B., & Stevens, J. L. (1998). Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. Journal of Biological Chemistry, 273, 12858–12862. doi:10.1074/jbc.273.21.12858.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (2006). Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxidants Redox Signaling, 8, 1997–2006. doi:10.1089/ars.2006.8.1997.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, A. L., Thiruchelvam, M., Manning-Bog, A. B., Thiffault, C., Langston, J. W., Cory-Slechta, D. A., et al. (2002). Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of Disease, 10, 119–127. doi:10.1006/nbdi.2002.0507.

    Article  PubMed  CAS  Google Scholar 

  • McCormack, A. L., & Di Monte, D. A. (2003). Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. Journal of Neurochemistry, 85, 82–86.

    PubMed  CAS  Google Scholar 

  • McCormack, A. L., Atienza, J. G., Johnston, L. C., Andersen, J. K., Vu, S., & Di Monte, D. A. (2005). Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. Journal of Neurochemistry, 93, 1030–1037. doi:10.1111/j.1471-4159.2005.03088.x.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., & Lipton, S. A. (2008). Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxidants Redox Signaling, 10, 87–101. doi:10.1089/ars.2007.1858.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, W., & Frandsen, A. (2001). Endoplasmic reticulum dysfunction—a common denominator for cell injury in acute and degenerative diseases of the brain? Journal of Neurochemistry, 79, 719–725. doi:10.1046/j.1471-4159.2001.00623.x.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J., Mao, X. O., Stevenson, F. F., Hsu, M., & Andersen, J. K. (2004). The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. Journal of Biological Chemistry, 279, 32626–32632. doi:10.1074/jbc.M404596200.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J., Stevenson, F. F., Doctrow, S. R., & Andersen, J. K. (2005). Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: Implications for Parkinson disease. Journal of Biological Chemistry, 280, 29194–29198. doi:10.1074/jbc.M500984200.

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the a-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047. doi:10.1126/science.276.5321.2045.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan, S., & Andersen, J. K. (2001). Alpha synuclein aggregation: is it the toxic gain of function responsible for neurodegeneration in Parkinson’s disease? Mechanisms of Ageing and Development, 122, 1499–1510. doi:10.1016/S0047-6374(01)00283-4.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., et al. (2001). Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. Journal of Biological Chemistry, 276, 33869–33874. doi:10.1074/jbc.M102225200.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Castro-Obregon, S., Frankowski, H., Schuler, M., Stoka, V., Del Rio, G., et al. (2002a). Coupling endoplasmic reticulum stress to the cell death program. An APAF-1-independent intrinsic pathway. Journal of Biological Chemistry, 277, 21836–21842. doi:10.1074/jbc.M202726200.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., et al. (2002b). Coupling endoplasmic reticulum stress to the cell death program: Role of the ER chaperone GRP78. FEBS Letters, 514, 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., & Bredesen, D. E. (2004). Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Current Opinion in Cell Biology, 16, 653–662. doi:10.1016/j.ceb.2004.09.012.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Ellerby, H. M., & Bredesen, D. E. (2004a). Coupling endoplasmic reticulum stress to the cell death program. Cell Death and Differentiation, 11, 372–380. doi:10.1038/sj.cdd.4401378.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Poksay, K. S., Castro-Obregon, S., Schilling, B., Row, R. H., Del Rio, G., et al. (2004b). Molecular components of a cell death pathway activated by endoplasmic reticulum stress. Journal of Biological Chemistry, 279, 177–187. doi:10.1074/jbc.M304490200.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Niazi, K., Mollahan, P., Mao, X., Crippen, D., Poksay, K. S., et al. (2006). Coupling endoplasmic reticulum stress to the cell-death program: A novel HSP90-independent role for the small chaperone protein p23. Cell Death and Differentiation, 13, 415–425. doi:10.1038/sj.cdd.4401761.

    Article  PubMed  CAS  Google Scholar 

  • Reijonen, S., Putkonen, N., Norremolle, A., Lindholm, D., & Korhonen, L. (2008). Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Experimental Cell Research, 314, 950–960. doi:10.1016/j.yexcr.2007.12.025.

    Article  PubMed  CAS  Google Scholar 

  • Riedl, S. J., & Salvesen, G. S. (2007). The apoptosome: Signalling platform of cell death. Nature Reviews. Molecular Cell Biology, 8, 405–413. doi:10.1038/nrm2153.

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski, D. T., & Kaufman, R. J. (2004). A trip to the ER: Coping with stress. Trends in Cell Biology, 14, 20–28. doi:10.1016/j.tcb.2003.11.001.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O. V., Ron, D., & Greene, L. A. (2002). Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. Journal of Neuroscience, 22, 10690–10698.

    Article  PubMed  CAS  Google Scholar 

  • Sitia, R., & Braakman, I. (2003). Quality control in the endoplasmic reticulum protein factory. Nature, 426, 891–894. doi:10.1038/nature02262.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. W., Jiang, H., Pei, Z., Tanaka, Y., Morita, H., Sawa, A., et al. (2005). Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Human Molecular Genetics, 14, 3801–3811. doi:10.1093/hmg/ddi396.

    Article  PubMed  CAS  Google Scholar 

  • Sokka, A. L., Putkonen, N., Mudo, G., Pryazhnikov, E., Reijonen, S., Khiroug, L., et al. (2007). Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. Journal of Neuroscience, 27, 901–908. doi:10.1523/JNEUROSCI.4289-06.2007.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies [letter]. Nature, 388, 839–840. doi:10.1038/42166.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, R., Imai, Y., Hattori, N., & Mizuno, Y. (2003). Parkin and endoplasmic reticulum stress. Annals of the New York Academy of Sciences, 991, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Uehara, T., Nakamura, T., Yao, D., Shi, Z. Q., Gu, Z., Ma, Y., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441, 513–517. doi:10.1038/nature04782.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. Q., & Takahashi, R. (2007). Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson’s disease. Antioxidants Redox Signaling, 9, 553–561. doi:10.1089/ars.2006.1524.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, H., & Wang, H. G. (2004). CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. Journal of Biological Chemistry, 279, 45495–45502. doi:10.1074/jbc.M406933200.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Sugama, S., Mischak, R. P., Kiaei, M., Bizat, N., Brouillet, E., et al. (2004). A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiology of Disease, 17, 250–259. doi:10.1016/j.nbd.2004.07.021.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., & Tiffany-Castiglioni, E. (2005). The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: Relevance to the dopaminergic pathogenesis. Journal of Toxicology and Environmental Health. Part A, 68, 1939–1961. doi:10.1080/15287390500226987.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., & Tiffany-Castiglioni, E. (2007). The bipyridyl herbicide paraquat induces proteasome dysfunction in human neuroblastoma SH-SY5Y cells. Journal of Toxicology and Environmental Health. Part A, 70, 1849–1857. doi:10.1080/15287390701459262.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., & Tiffany-Castiglioni, E. (2008). Paraquat-induced apoptosis in human neuroblastoma SH-SY5Y cells: Involvement of p53 and mitochondria. Journal of Toxicology and Environmental Health. Part A, 71, 289–299. doi:10.1080/15287390701738467.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z., Luo, H., Fu, W., & Mattson, M. P. (1999). The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: Suppression of oxidative stress and stabilization of calcium homeostasis. Experimental Neurology, 155, 302–314. doi:10.1006/exnr.1998.7002.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W., Hurlbert, M. S., Schaack, J., Prasad, K. N., & Freed, C. R. (2000). Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Research, 866, 33–43. doi:10.1016/S0006-8993(00)02215-0.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S., & Tytgat, J. (2004). Evolutionary epitopes of Hsp90 and p23: Implications for their interaction. FASEB Journal, 18, 940–947. doi:10.1096/fj.04-1570hyp.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the Bredesen laboratory and Andersen laboratory for helpful comments and discussions, and Molly Susag for administrative assistance. This work was supported by grants from the National Institutes of Health NS33376 to D.E.B. & R.V.R, and AG12282 to D.E.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julie K. Andersen or Rammohan V. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinta, S.J., Rane, A., Poksay, K.S. et al. Coupling Endoplasmic Reticulum Stress to the Cell Death Program in Dopaminergic Cells: Effect of Paraquat. Neuromol Med 10, 333–342 (2008). https://doi.org/10.1007/s12017-008-8047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8047-9

Keywords

Navigation