Skip to main content

Advertisement

Log in

Endoplasmic Reticulum Stress–Induced Cell Death in Dopaminergic Cells: Effect of Resveratrol

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Resveratrol, a naturally occurring polyphenol, exhibits antioxidant, antiaging, and anticancer activity. Resveratrol has also been shown to inhibit tumor initiation, promotion, and progression in a variety of cell culture systems. Earlier, we showed that paraquat, a bipyridyl herbicide, triggers endoplasmic reticulum stress, cell dysfunction, and dopaminergic cell death. Due to its antioxidant activity, we assessed the ability of resveratrol to rescue cells from the toxic effects of paraquat. While resveratrol did not have any protective effect at low concentrations, it triggered endoplasmic reticulum (ER) stress-induced cell death at higher concentrations (50–250 μM). The present study was carried out to determine the mechanism by which resveratrol triggers ER stress and cell death in dopaminergic N27 cells. Our studies demonstrate that resveratrol triggers ER stress and cell dysfunction, caspase activation, p23 cleavage and inhibition of proteasomal activity in dopaminergic N27 cells. While over expression of uncleavable p23 was associated with decreased cell death, downregulation of p23 protein expression by siRNA resulted in enhancement of ER stress-induced cell death triggered by resveratrol indicating a protective role for the small co-chaperone p23 in dopaminergic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

pcd:

programmed cell death

eIF2α:

eukaryotic initiation factor-2 alpha

GRP:

glucose-regulated protein

References

  • Adams, F. S., La Rosa, F. G., Kumar, S., Edwards-Prasad, J., Kentroti, S., Vernadakis, A., et al. (1996). Characterization and transplantation of two neuronal cell lines with dopaminergic properties. Neurochemical Research, 21, 619–627. doi:10.1007/BF02527762.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J. K. (2000). What causes the build-up of ubiquitin-containing inclusions in Parkinson’s disease? Mechanisms of Ageing and Development, 118, 15–22. doi:10.1016/S0047-6374(00)00150-0.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J. K. (2004). Oxidative stress in neurodegeneration: Cause or consequence? Nature Medicine, 10(Suppl), S18–S25. doi:10.1038/nrn1434.

    PubMed  Google Scholar 

  • Bakhshi, J., Weinstein, L., Poksay, K. S., Nishinaga, B., Bredesen, D. E., & Rao, R. V. (2008). Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: Effect of curcumin. Apoptosis, 13, 904–914. doi:10.1007/s10495-008-0221-x.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, J. H., Goupil, S., Garber, G. B., & Helfand, S. L. (2004). An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 101, 12980–12985. doi:10.1073/pnas.0403493101.

    Article  PubMed  CAS  Google Scholar 

  • Blanchet, J., Longpre, F., Bureau, G., Morissette, M., Dipaolo, T., Bronchti, G., et al. (2008). Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32, 1243–1250. doi:10.1016/j.pnpbp.2008.03.024.

    Article  CAS  Google Scholar 

  • Boocock, D. J., Faust, G. E., Patel, K. R., Schinas, A. M., Brown, V. A., Ducharme, M. P., et al. (2007). Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiology, Biomarkers & Prevention, 16, 1246–1252. doi:10.1158/1055-9965.EPI-07-0022.

    Article  CAS  Google Scholar 

  • Boyce, M., Bryant, K. F., Jousse, C., Long, K., Harding, H. P., Scheuner, D., et al. (2005). A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science, 307, 935–939. doi:10.1126/science.1101902.

    Article  PubMed  CAS  Google Scholar 

  • Bredesen, D. E., Rao, R. V., & Mehlen, P. (2006). Cell death in the nervous system. Nature, 443, 796–802. doi:10.1038/nature05293.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, G., Longpre, F., & Martinoli, M. G. (2008). Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. Journal of Neuroscience Research, 86, 403–410. doi:10.1002/jnr.21503.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K. T., Goldberg, A. L., & Nigam, S. K. (1997). Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. The Journal of Biological Chemistry, 272, 9086–9092. doi:10.1074/jbc.272.14.9086.

    Article  PubMed  CAS  Google Scholar 

  • Calabrese, V., Cornelius, C., Mancuso, C., Pennisi, G., Calafato, S., Bellia, F., et al. (2008). Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochemical Research, 33(12), 2444–2471.

    Article  PubMed  CAS  Google Scholar 

  • Caserta, T. M., Smith, A. N., Gultice, A. D., Reedy, M. A., & Brown, T. L. (2003). Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis, 8, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Chao, J., Yu, M. S., Ho, Y. S., Wang, M., & Chang, R. C. (2008). Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radical Biology & Medicine, 45, 1019–1026. doi:10.1016/j.freeradbiomed.2008.07.002.

    Article  CAS  Google Scholar 

  • Chinta, S. J., & Andersen, J. K. (2006). Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: Implications for Parkinson’s disease. Free Radical Biology & Medicine, 41, 1442–1448. doi:10.1016/j.freeradbiomed.2006.08.002.

    Article  CAS  Google Scholar 

  • Chinta, S. J., Rane, A., Poksay, K. S., Bredesen, D. E., Andersen, J. K., & Rao, R. V. (2008). Coupling endoplasmic reticulum stress to the cell death program in dopaminergic cells: effect of paraquat. Neuromolecular Medicine, Epub ahead of print,

  • Clarkson, E. D., Rosa, F. G., Edwards-Prasad, J., Weiland, D. A., Witta, S. E., Freed, C. R., et al. (1998). Improvement of neurological deficits in 6-hydroxydopamine-lesioned rats after transplantation with allogeneic simian virus 40 large tumor antigen gene-induced immortalized dopamine cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 1265–1270.

    Article  PubMed  CAS  Google Scholar 

  • Crowell, J. A., Korytko, P. J., Morrissey, R. L., Booth, T. D., & Levine, B. S. (2004). Resveratrol-associated renal toxicity. Toxicological Sciences, 82, 614–619. doi:10.1093/toxsci/kfh263.

    Article  PubMed  CAS  Google Scholar 

  • de Almeida, L. M., Leite, M. C., Thomazi, A. P., Battu, C., Nardin, P., Tortorelli, L. S., et al. (2008). Resveratrol protects against oxidative injury induced by H(2)O(2) in acute hippocampal slice preparations from Wistar rats. Archives of Biochemistry and Biophysics, 480(1), 27–32.

    Article  PubMed  CAS  Google Scholar 

  • de la Lastra, C. A., & Villegas, I. (2005). Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Molecular Nutrition & Food Research, 49, 405–430.

    Article  CAS  Google Scholar 

  • Duarte, J., Andriambeloson, E., Diebolt, M., & Andriantsitohaina, R. (2004). Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation. Physiological Research, 53, 595–602.

    PubMed  CAS  Google Scholar 

  • Dursun, B., He, Z., Somerset, H., Oh, D. J., Faubel, S., & Edelstein, C. L. (2006). Caspases and calpain are independent mediators of cisplatin-induced endothelial cell necrosis. American Journal of Physiology. Renal Physiology, 291, F578–F587. doi:10.1152/ajprenal.00455.2005.

    Article  PubMed  CAS  Google Scholar 

  • Egger, L., Madden, D. T., Rheme, C., Rao, R. V., & Bredesen, D. E. (2007). Endoplasmic reticulum stress-induced cell death mediated by the proteasome. Cell Death and Differentiation, 14, 1172–1180. doi:10.1038/sj.cdd.4402125.

    Article  PubMed  CAS  Google Scholar 

  • Ellerby, H. M., Martin, S. J., Ellerby, L. M., Naiem, S. S., Rabizadeh, S., Salvesen, G. S., et al. (1997). Establishment of a cell-free system of neuronal apoptosis: Comparison of premitochondrial, mitochondrial, and postmitochondrial phases. The Journal of Neuroscience, 17, 6165–6178.

    PubMed  CAS  Google Scholar 

  • Forman, M. S., Lee, V. M., & Trojanowski, J. Q. (2003). ‘Unfolding’ pathways in neurodegenerative disease. Trends in Neurosciences, 26, 407–410. doi:10.1016/S0166-2236(03)00197-8.

    Article  PubMed  CAS  Google Scholar 

  • Fribley, A., & Wang, C. Y. (2006). Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biology & Therapy, 5, 745–748.

    CAS  Google Scholar 

  • Harding, H. P., Calfon, M., Urano, F., Novoa, I., & Ron, D. (2002). Transcriptional and translational control in the Mammalian unfolded protein response. Annual Review of Cell and Developmental Biology, 18, 575–599. doi:10.1146/annurev.cellbio.18.011402.160624.

    Article  PubMed  CAS  Google Scholar 

  • Holtz, W. A., & O’Malley, K. L. (2003). Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. The Journal of Biological Chemistry, 278, 19367–19377. doi:10.1074/jbc.M211821200.

    Article  PubMed  CAS  Google Scholar 

  • Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196. doi:10.1038/nature01960.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, J. T., Kwon, D. Y., Park, O. J., & Kim, M. S. (2008). Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes and Nutrition, 2, 323–326. doi:10.1007/s12263-007-0069-7.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, Y., Waxman, S., & Germain, D. (2007). Targeting the ubiquitin-proteasome pathway in cancer therapy. Anti-cancer Agents in Medicinal Chemistry, 7, 359–365. doi:10.2174/187152007780618180.

    Article  PubMed  CAS  Google Scholar 

  • Jin, F., Wu, Q., Lu, Y. F., Gong, Q. H., & Shi, J. S. (2008). Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. European Journal of Pharmacology, 600(1–3), 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Juan, M. E., Vinardell, M. P., & Planas, J. M. (2002). The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful. The Journal of Nutrition, 132, 257–260.

    PubMed  CAS  Google Scholar 

  • Kaufman, R. J. (1999). Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes & Development, 13, 1211–1233. doi:10.1101/gad.13.10.1211.

    Article  CAS  Google Scholar 

  • Kitamura, Y., Inden, M., Miyamura, A., Kakimura, J., Taniguchi, T., & Shimohama, S. (2002). Possible involvement of both mitochondria- and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neuroscience Letters, 333, 25–28. doi:10.1016/S0304-3940(02)00964-3.

    Article  PubMed  CAS  Google Scholar 

  • Kopito, R. R. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology, 10, 524–530. doi:10.1016/S0962-8924(00)01852-3.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Bowes 3rd, R. C., van de Water, B., Sillence, C., Nagelkerke, J. F., & Stevens, J. L. (1997). Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. The Journal of Biological Chemistry, 272, 21751–21759. doi:10.1074/jbc.272.35.21751.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Miller, E., van de Water, B., & Stevens, J. L. (1998). Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. The Journal of Biological Chemistry, 273, 12858–12862. doi:10.1074/jbc.273.21.12858.

    Article  PubMed  CAS  Google Scholar 

  • Lu, K. T., Ko, M. C., Chen, B. Y., Huang, J. C., Hsieh, C. W., Lee, M. C., et al. (2008). Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. Journal of Agricultural and Food Chemistry, 56, 6910–6913. doi:10.1021/jf8007212.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., & Hendershot, L. M. (2002). The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress & Chaperones, 7, 222–229. doi:10.1379/1466-1268(2002)007<0222:TMERAA>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Mattson, M. P. (2006). Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxidants & Redox Signalling, 8, 1997–2006. doi:10.1089/ars.2006.8.1997.

    Article  CAS  Google Scholar 

  • Nakamura, T., & Lipton, S. A. (2008). Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxidants & Redox Signalling, 10, 87–101. doi:10.1089/ars.2007.1858.

    Article  CAS  Google Scholar 

  • Okawara, M., Katsuki, H., Kurimoto, E., Shibata, H., Kume, T., & Akaike, A. (2007). Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochemical Pharmacology, 73, 550–560. doi:10.1016/j.bcp.2006.11.003.

    Article  PubMed  CAS  Google Scholar 

  • Pallas, M., Verdaguer, E., Tajes, M., Gutierrez-Cuesta, J., & Camins, A. (2008). Modulation of sirtuins: New targets for antiageing. Recent Patents CNS Drug Discov, 3, 61–69.

    Article  CAS  Google Scholar 

  • Paschen, W., & Frandsen, A. (2001). Endoplasmic reticulum dysfunction–a common denominator for cell injury in acute and degenerative diseases of the brain? Journal of Neurochemistry, 79, 719–725. doi:10.1046/j.1471-4159.2001.00623.x.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan, S., & Andersen, J. K. (2001). Alpha synuclein aggregation: Is it the toxic gain of function responsible for neurodegeneration in Parkinson’s disease? Mechanisms of Ageing and Development, 122, 1499–1510. doi:10.1016/S0047-6374(01)00283-4.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., & Bredesen, D. E. (2004). Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Current Opinion in Cell Biology, 16, 653–662. doi:10.1016/j.ceb.2004.09.012.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., et al. (2001). Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. The Journal of Biological Chemistry, 276, 33869–33874. doi:10.1074/jbc.M102225200.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Castro-Obregon, S., Frankowski, H., Schuler, M., Stoka, V., Del Rio, G., et al. (2002a). Coupling Endoplasmic Reticulum Stress to the Cell Death Program. AN Apaf-1-INDEPENDENT INTRINSIC PATHWAY. The Journal of Biological Chemistry, 277, 21836–21842. doi:10.1074/jbc.M202726200.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., et al. (2002b). Coupling endoplasmic reticulum stress to the cell death program: Role of the ER chaperone GRP78. FEBS Letters, 514, 122–128.

    PubMed  CAS  Google Scholar 

  • Rao, R. V., Ellerby, H. M., & Bredesen, D. E. (2004a). Coupling endoplasmic reticulum stress to the cell death program. Cell Death and Differentiation, 11, 372–380. doi:10.1038/sj.cdd.4401378.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Poksay, K. S., Castro-Obregon, S., Schilling, B., Row, R. H., Del Rio, G., et al. (2004b). Molecular components of a cell death pathway activated by endoplasmic reticulum stress. The Journal of Biological Chemistry, 279, 177–187. doi:10.1074/jbc.M304490200.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. V., Niazi, K., Mollahan, P., Mao, X., Crippen, D., Poksay, K. S., et al. (2006). Coupling endoplasmic reticulum stress to the cell-death program: A novel HSP90-independent role for the small chaperone protein p23. Cell Death and Differentiation, 13, 415–425. doi:10.1038/sj.cdd.4401761.

    Article  PubMed  CAS  Google Scholar 

  • Reijonen, S., Putkonen, N., Norremolle, A., Lindholm, D., & Korhonen, L. (2008). Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Experimental Cell Research, 314, 950–960. doi:10.1016/j.yexcr.2007.12.025.

    Article  PubMed  CAS  Google Scholar 

  • Riedl, S. J., & Salvesen, G. S. (2007). The apoptosome: Signalling platform of cell death. Nature Reviews. Molecular Cell Biology, 8, 405–413. doi:10.1038/nrm2153.

    Article  PubMed  CAS  Google Scholar 

  • Rocha-Gonzalez, H. I., Ambriz-Tututi, M., & Granados-Soto, V. (2008). Resveratrol: A natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther, 14, 234–247. doi:10.1111/j.1755-5949.2008.00045.x.

    Article  PubMed  CAS  Google Scholar 

  • Ron, D. (2002). Translational control in the endoplasmic reticulum stress response. The Journal of Clinical Investigation, 110, 1383–1388.

    PubMed  CAS  Google Scholar 

  • Rubiolo, J. A., Mithieux, G., & Vega, F. V. (2008). Resveratrol protects primary rat hepatocytes against oxidative stress damage: Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. European Journal of Pharmacology, 591, 66–72. doi:10.1016/j.ejphar.2008.06.067.

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski, D. T., & Kaufman, R. J. (2004). A trip to the ER: Coping with stress. Trends in Cell Biology, 14, 20–28. doi:10.1016/j.tcb.2003.11.001.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, E. J., Harding, H. P., Angelastro, J. M., Vitolo, O. V., Ron, D., & Greene, L. A. (2002). Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. The Journal of Neuroscience, 22, 10690–10698.

    PubMed  CAS  Google Scholar 

  • Sitia, R., & Braakman, I. (2003). Quality control in the endoplasmic reticulum protein factory. Nature, 426, 891–894. doi:10.1038/nature02262.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. W., Jiang, H., Pei, Z., Tanaka, Y., Morita, H., Sawa, A., et al. (2005). Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Human Molecular Genetics, 14, 3801–3811. doi:10.1093/hmg/ddi396.

    Article  PubMed  CAS  Google Scholar 

  • Sokka, A. L., Putkonen, N., Mudo, G., Pryazhnikov, E., Reijonen, S., Khiroug, L., et al. (2007). Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. The Journal of Neuroscience, 27, 901–908. doi:10.1523/JNEUROSCI.4289-06.2007.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, R., Imai, Y., Hattori, N., & Mizuno, Y. (2003). Parkin and endoplasmic reticulum stress. Annals of the New York Academy of Sciences, 991, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Uehara, T., Nakamura, T., Yao, D., Shi, Z. Q., Gu, Z., Ma, Y., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441, 513–517. doi:10.1038/nature04782.

    Article  PubMed  CAS  Google Scholar 

  • Walle, T., Hsieh, F., DeLegge, M. H., Oatis Jr, J. E., & Walle, U. K. (2004). High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 32, 1377–1382. doi:10.1124/dmd.104.000885.

    Article  CAS  Google Scholar 

  • Welihinda, A. A., Tirasophon, W., & Kaufman, R. J. (1999). The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expression, 7, 293–300.

    PubMed  CAS  Google Scholar 

  • Wenzel, E., & Somoza, V. (2005). Metabolism and bioavailability of trans-resveratrol. Molecular Nutrition & Food Research, 49, 472–481. doi:10.1002/mnfr.200500010.

    Article  CAS  Google Scholar 

  • Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M., et al. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 430, 686–689. doi:10.1038/nature02789.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Sugama, S., Mischak, R. P., Kiaei, M., Bizat, N., Brouillet, E., et al. (2004). A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiology of Disease, 17, 250–259. doi:10.1016/j.nbd.2004.07.021.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z., Luo, H., Fu, W., & Mattson, M. P. (1999). The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: Suppression of oxidative stress and stabilization of calcium homeostasis. Experimental Neurology, 155, 302–314. doi:10.1006/exnr.1998.7002.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W., Hurlbert, M. S., Schaack, J., Prasad, K. N., & Freed, C. R. (2000). Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Research, 866, 33–43. doi:10.1016/S0006-8993(00)02215-0.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Bredesen laboratory and Andersen laboratory for helpful comments and discussions and Molly Susag for administrative assistance. This work was supported by grants from the National Institutes of Health NS33376 to D.E.B. and R.V.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julie K. Andersen or Rammohan V. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinta, S.J., Poksay, K.S., Kaundinya, G. et al. Endoplasmic Reticulum Stress–Induced Cell Death in Dopaminergic Cells: Effect of Resveratrol. J Mol Neurosci 39, 157–168 (2009). https://doi.org/10.1007/s12031-008-9170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9170-7

Keywords

Navigation