Skip to main content
Log in

Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Soil microorganisms play an essential role in soil ecosystem processes such as organic matter decomposition, nutrient cycling, and plant nutrient availability. The land use for greenhouse cultivation has been increasing continuously, which involves an intensive input of agricultural materials to enhance productivity; however, relatively little is known about bacterial communities in greenhouse soils. To assess the effects of environmental factors on the soil bacterial diversity and community composition, a total of 187 greenhouse soil samples collected across Korea were subjected to bacterial 16S rRNA gene pyrosequencing analysis. A total of 11,865 operational taxonomic units at a 97% similarity cutoff level were detected from 847,560 sequences. Among nine soil factors evaluated; pH, electrical conductivity (EC), exchangeable cations (Ca2+, Mg2+, Na+, and K+), available P2O5, organic matter, and NO3-N, soil pH was most strongly correlated with bacterial richness (polynomial regression, pH: R2 = 0.1683, P < 0.001) and diversity (pH: R2 = 0.1765, P < 0.001). Community dissimilarities (Bray-Curtis distance) were positively correlated with Euclidean distance for pH and EC (Mantel test, pH: r = 0.2672, P < 0.001; EC: r = 0.1473, P < 0.001). Among dominant phyla (> 1%), the relative abundances of Proteobacteria, Gemmatimonadetes, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were also more strongly correlated with pH and EC values, compared with other soil cation contents, such as Ca2+, Mg2+, Na+, and K+. Our results suggest that, despite the heterogeneity of various environmental variables, the bacterial communities of the intensively cultivated greenhouse soils were particularly influenced by soil pH and EC. These findings therefore shed light on the soil microbial ecology of greenhouse cultivation, which should be helpful for devising effective management strategies to enhance soil microbial diversity and improving crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J.H., Hong, I.P., Bok, J.I., Kim, B.Y., Song, J., and Weon, H.Y. 2012. Pyrosequencing analysis of the bacteria communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 50, 735–745.

    Article  PubMed  Google Scholar 

  • Baldrian, P., Kolarík, M., Stursová, M., Kopecký, J., Valášková, V., Vetrovský, T., Zifcáková, L., Snajdr, J., Ridl, J., Vlcek, C., et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258.

    Article  CAS  PubMed  Google Scholar 

  • Bartram, A.K., Jiang, X., Lynch, M.D., Masella, A.P., Nicol, G.W., Dushoff, J., and Neufeld, J.D. 2014. Exploring links between pH and bacterial community composition in soils from the Craibstone experimental farm. FEMS Microbiol. Ecol. 87, 403–415.

    Article  CAS  PubMed  Google Scholar 

  • Bending, D.G., Putland, C., and Rayns, F. 2000. Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biol. Fertil. Soils 31, 78–84.

    Article  CAS  Google Scholar 

  • Buckley, D.H. and Schmidt, T.M. 2003. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5, 441–452.

    Article  PubMed  Google Scholar 

  • Canfora, L., Bacci, G., Pinzari, F., Lo Papa, G., and Dazzi, C. 2014. Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One 9, e106662.

  • Casamayor, E.O., Massana, R., Benlloch, S., Øvreås, L., Díez, B., Goddard, V.J., Gasol, J.M., Joint, I., Rodríguez-Valera, F., and Pedrós-Alió, C. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348.

    Article  PubMed  Google Scholar 

  • Chu, H., Fierer, N., Lauber, C.L., Caporaso, J.G., Knight, R., and Grogan, P. 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, P. 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930.

    Article  Google Scholar 

  • Drenovsky, R.E., Steenwerth, K.L., Jackson, L.E., and Scow, K.M. 2010. Land use and climatic factors structure regional patterns in soil microbial communities. Glob. Ecol. Biogeogr. 19, 27–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.

    Article  CAS  PubMed  Google Scholar 

  • Fierer, N., Bradford, M.A., and Jackson, R.B. 2007. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364.

    Article  PubMed  Google Scholar 

  • Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M., and Ball, A.S. 2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69, 1800–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girvan, M.S., Campbell, C.D., Killham, K., Prosser, J.I., and Glover, L.A. 2005. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., and Whiteley, A.S. 2011. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654.

    Article  PubMed  Google Scholar 

  • Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W., Vitousek, P.M., and Zhang, F.S. 2010. Significant acidification in major Chinese croplands. Science 327, 1008–1010.

    Article  CAS  PubMed  Google Scholar 

  • Hardie, M. and Doyle, R. 2012. Measuring soil salinity. Methods Mol. Biol. 913, 415–425.

    CAS  PubMed  Google Scholar 

  • Hartmann, M., Frey, B., Mayer, J., Mader, P., and Widmer, F. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194.

    Article  PubMed  Google Scholar 

  • Henriques, I.S., Alves, A., Tacao, M., Almeida, A., Cunha, A., and Correia, A. 2006. Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci. 68, 139–148.

    Article  Google Scholar 

  • Joa, J.H., Weon, H.Y., Hyun, H.N., Jeun, Y.C., and Koh, S.W. 2014. Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash. J. Microbiol. 52, 995–1001.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.S., Roh, A.S., Choi, S.C., Kim, Y.S., Kim, H.J., Choi, M.T., Ahn, B.G., Kim, H.K., Park, S.J., Lee, Y.H., et al. 2013. Status and change in chemical properties of polytunnel soil in Korea from 2000 to 2012. Korean J. Soil Sci. Fert. 46, 641–646.

    Article  CAS  Google Scholar 

  • Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., and Webb, C.O. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, A.C. 1999. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74, 65–76.

    Article  Google Scholar 

  • Kim, M., Cho, A., Lim, H.S., Hong, S.G., Kim, J.H., Lee, J., Choi, T., Ahn, T.S., and Kim, O.S. 2015. Highly heterogeneous soil bacterial communities around Terra Nova Bay of northern Victoria Land, Antarctica. PLoS One 10, e0119966.

    Google Scholar 

  • Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauber, C.L., Strickland, M.S., Bradford, M.A., and Fierer, N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407–2415.

    Article  CAS  Google Scholar 

  • Liu, J., Sui, Y., Yu, Z., Shi, Y., Chu, H., Jin, J., Liu, X., and Wang, G. 2014. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 70, 113–122.

    Article  CAS  Google Scholar 

  • Lozupone, C.A. and Knight, R. 2007. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 104, 11436–11440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, J.C., Ibekwe, A.M., Yang, C.H., and Crowley, D.E. 2016. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations. Sci. Total Environ. 563, 199–209.

    Article  PubMed  Google Scholar 

  • Min, W., Guo, H., Zhang, W., Zhou, G., Ma, L., Ye, J., Liang, Y., and Hou, Z. 2016. Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agric. Scand. Sect. B 66, 117–126.

    CAS  Google Scholar 

  • Nacke, H., Thürmer, A., Wollherr, A., Will, C., Hodac, L., Herold, N., Schöning, I., Schrumpf, M., and Daniel, R. 2011. Pyrosequencingbased assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6, e17000.

    Article  Google Scholar 

  • Nemergut, D.R., Costello, E.K., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S.K., Fierer, N., Townsend, A.R., Cleveland, C.C., Stanish, L., et al. 2011. Global patterns in the biogeography of bacterial taxa. Environ. Microbiol. 13, 135–144.

    Article  PubMed  Google Scholar 

  • NIAST. 2000. Methods of analysis of soil and plant. NIAST (National Institute of Agricultural Science and Technology), Suwon, Korea (in Korean).

    Google Scholar 

  • Nielsen, M.N. and Winding, A. 2002. Microorganisms as indicators of soil health. National Environmental Research Institute, Technical Report no. 388. National Environmental Research Institute, Denmark. (http://www2.dmu.dk/1_viden/2_Publikationer/ 3_fagrapporter/rapporter/FR388.pdf).

    Google Scholar 

  • Pereira, L.B., Vicentini, R., and Ottoboni, L.M.M. 2014. Changes in the bacterial community of soil from a neutral mine drainage channel. PLoS One 9, e96605.

    Article  Google Scholar 

  • Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., Chorover, J., Chadwick, O.A., Hale, C.M., and Tjoelker, M.G. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol. Lett. 8, 811–818.

    Article  Google Scholar 

  • Reis, R.A., Fontes, P.C.R., Neves, J.C.L., and Santos, N.T. 1999. Total soil electrical conductivity and critical soil K+ to Ca2+ and Mg2+ ratio for potato crops. Sci. Agric. 56, 993–997.

    Article  CAS  Google Scholar 

  • Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., and Fierer, N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351.

    Article  PubMed  Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform- independent, community-supported software for describing, and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo, H.D., Kang, S.H., Kim, K.Y., Kim, H.T., and Kang, S.J. 2013. White revolution of agriculture in Korea: The achievement of year-round production and distribution of horticultural crops by the expansion of greenhouse cultivation. KDI School of Public Policy and Management, Seoul.

    Google Scholar 

  • Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., and Chu, H. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211.

    Article  CAS  Google Scholar 

  • Shi, D.C. and Wang, D.L. 2005. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil 271, 15–26.

    Article  CAS  Google Scholar 

  • Shi, W.M., Yao, J., and Yan, F. 2009. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China. Nutr. Cycl. Agroecosys. 83, 73–84.

    Article  CAS  Google Scholar 

  • Singh, D., Shi, L., and Adams, J.M. 2013. Bacterial diversity in the mountains of south-west China: climate dominates over soil parameters. J. Microbiol. 51, 439–447.

    Article  CAS  PubMed  Google Scholar 

  • Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., et al. 2016. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028.

    Article  PubMed  Google Scholar 

  • Sridevi, G., Minocha, R., Turlapati, S.A., Goldfarb, K.C., Brodie, E.L., Tisa, L.S., and Minocha, S.C. 2012. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. FEMS Microbiol. Ecol. 79, 728–740.

    Article  CAS  PubMed  Google Scholar 

  • Steenwerth, K.L., Jackson, L.E., Calderón, F.J., Stromberg, M.R., and Scow, K.M. 2002. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol. Biochem. 34, 1599–1611.

    Article  CAS  Google Scholar 

  • Sun, L., Gao, J., Huang, T., Kendall, J.R.A., Shen, Q., and Zhang, R. 2015. Parental material and cultivation determine soil bacterial community structure and fertility. FEMS Microbiol. Ecol. 91, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, B.M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A.N., Go, R., Rahim, R.A., Husni, M.H., Chun, J., et al. 2012. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb. Ecol. 64, 474–484.

    Article  PubMed  Google Scholar 

  • Tripathi, B., Lee-Cruz, L., Kim, M., Singh, D., Go, R., Shukor, N.A., Husni, M.H., Chun, J., and Adams, J. 2014. Spatial scaling effects on soil bacterial communities in Malaysian tropical forests. Microb. Ecol. 68, 247–258.

    Article  PubMed  Google Scholar 

  • van der Heijden, M.G.A. and Wagg, C. 2013. Soil microbial diversity and agro-ecosystem functioning. Plant Soil 363, 1–5.

    Article  CAS  Google Scholar 

  • van Diepeningen, A.D., de Vos, O.J., Korthals, G.W., and van Bruggen, A.H.C. 2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl. Soil Ecol. 31, 120–135.

    Article  Google Scholar 

  • Wu, Q.L., Zwart, G., Schauer, M., Kamst-van Agterveld, M.P., and Hahn, M.W. 2006. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol. 72, 5478–5485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H.J., Li, S., Su, J.Q., Nie, S.A., Gibson, V., Li, H., and Zhu, Y.G. 2014. Does urbanization shape bacterial community composition in urban park soils? a case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiol. Ecol. 87, 182–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang-Yeon Weon.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M., Roh, AS., Choi, SC. et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J Microbiol. 54, 838–845 (2016). https://doi.org/10.1007/s12275-016-6526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6526-5

Keywords

Navigation