Skip to main content

Advertisement

Log in

Tropical Soil Bacterial Communities in Malaysia: pH Dominates in the Equatorial Tropics Too

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types—primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1–V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  2. Hoffmann M et al (2010) The impact of conservation on the status of the world's vertebrates. Science 330:1503–1509

    Article  PubMed  CAS  Google Scholar 

  3. Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Evol Ecol 19:654–660

    Article  Google Scholar 

  4. Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, Pittman KW, Arunarwati B, Stolle F, Steininger MK, Carroll M, DiMiceli C (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. P Natl Acad Sci USA 105:9439–9444

    Article  CAS  Google Scholar 

  5. Brook BW, Sodhi NS, Ng PKL (2003) Catastrophic extinctions follow deforestation in Singapore. Nature 424:420–423

    Article  PubMed  CAS  Google Scholar 

  6. Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64

    Article  Google Scholar 

  7. Edwards DP, Hodgson JA, Hamer KC, Mitchell SL, Ahmad AH, Cornell SJ, Wilcove DS (2010) Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv Lett 3:236–242

    Article  Google Scholar 

  8. Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Bruhl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Evol Ecol 23:538–545

    Article  Google Scholar 

  9. Edwards DP, Larsen TH, Docherty TDS, Ansell FA, Hsu WW, Derhe MA, Hamer KC, Wilcove DS (2011) Degraded lands worth protecting: the biological importance of Southeast Asia's repeatedly logged forests. P Roy Soc B-Biol Sci 278:82–90

    Article  Google Scholar 

  10. Sheldon FH, Styring A, Hosner PA (2010) Bird species richness in a Bornean exotic tree plantation: a long-term perspective. Biol Conserv 143:399–407

    Article  Google Scholar 

  11. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  12. Fulthorpe RR, Roesch LFW, Riva A, Triplett EW (2008) Distantly sampled soils carry few species in common. ISME J 2:901–910

    Article  PubMed  CAS  Google Scholar 

  13. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  PubMed  CAS  Google Scholar 

  14. Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    PubMed  CAS  Google Scholar 

  15. Nusslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65:3622–3626

    PubMed  CAS  Google Scholar 

  16. Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microb Ecol 49:50–62

    Article  PubMed  CAS  Google Scholar 

  17. Jesus ED, Marsh TL, Tiedje JM, Moreira FMD (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3:1004–1011

    Article  Google Scholar 

  18. Adams JM (2009) Species richness: patterns in the diversity of life. Springer-Praxis, Chichester

    Google Scholar 

  19. McGregor GR, Nieuwolt S (1998) Tropical climatology: an introduction to the climates of the low latitudes, 2nd edn. Wiley, New York

    Google Scholar 

  20. Walsh RPD, Newbery DM (1999) The ecoclimatology of Danum, Sabah, in the context of the world's rainforest regions, with particular reference to dry periods and their impact. Philos Trans R Soc B-Biol Sci 354:1869–1883

    Article  CAS  Google Scholar 

  21. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  22. Unno T, Jang J, Han D, Kim JH, Sadowsky MJ, Kim OS, Chun J, Hur HG (2010) Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environ Sci Technol 44:7777–7782

    Article  PubMed  CAS  Google Scholar 

  23. Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Kenny DR (eds) Method of soil analysis Part-2. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  24. Thomas GW (1982) Exchangeable cations. In: Page AL, Miller RH, Kenny DR (eds) Method of soil analysis Part-2. American Society of Agronomy, Madison, pp 159–165

    Google Scholar 

  25. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  26. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  27. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  28. Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  29. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. Primer-E Ltd., Plymouth

    Google Scholar 

  30. Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci USA 105:17842–17847

    Article  PubMed  CAS  Google Scholar 

  31. Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813

    Article  CAS  Google Scholar 

  32. Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  PubMed  CAS  Google Scholar 

  33. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654

    Article  PubMed  Google Scholar 

  34. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  PubMed  CAS  Google Scholar 

  35. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  36. Berry NJ, Phillips OL, Ong RC, Hamer KC (2008) Impacts of selective logging on tree diversity across a rainforest landscape: the importance of spatial scale. Landscape Ecol 23:915–929

    Google Scholar 

  37. Whitmore TC, Flenley JR, Harris DR (1982) The tropics as the norm in biogeography. Geogr J 148:8–21

    Article  Google Scholar 

  38. Grime JP (1987) Dominant and subordinate components of plant communities: implications for succession. In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell, Oxford, pp 413–429

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Brain Gain grant from the Government of Malaysia and by SNU new faculty research grant to JM Adams. BM Tripathi was supported by the Graduate Scholarship for Excellent Foreign Students Program, SNU, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Adams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, B.M., Kim, M., Singh, D. et al. Tropical Soil Bacterial Communities in Malaysia: pH Dominates in the Equatorial Tropics Too. Microb Ecol 64, 474–484 (2012). https://doi.org/10.1007/s00248-012-0028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0028-8

Keywords

Navigation