Skip to main content
Log in

Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

We report for the first time that the medicinal basidiomycete Lentinula edodes can reduce selenium from inorganic sodium selenite (SeIV) and the organoselenium compound 1,5-diphenyl-3-selenopentanedione-1,5 (DAPS-25) to the elemental state, forming spherical nanoparticles. Submerged cultivation of the fungus with sodium selenite or with DAPS-25 produced an intense red coloration of L. edodes mycelial hyphae, indicating accumulation of elemental selenium (Se0) in a red modification. Several methods, including transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and X-ray fluorescence, were used to show that red Se0 accumulated intracellularly in the fungal hyphae as electron-dense nanoparticles with a diameter of 180.51±16.82 nm. Under designated cultivation conditions, shiitake did not reduce selenium from sodium selenate (SeVI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, D.W. 2006. Concentration scales for sugar solutions. J. Chem. Educ. 83, 1489–1491.

    Article  CAS  Google Scholar 

  • Brady, J.M., Tobin, J.M., and Gadd, G.M. 1996. Volatilization of selenite in aqueous medium by a Penicillium species. Res. Microbiol. 100, 955–961.

    CAS  Google Scholar 

  • Díaz Huerta, V., Fernández Sánchez, M.L., and Sanz-Medel, A. 2006. An attempt to differentiate HPLC-ICP-MS selenium speciation in natural and selenised Agaricus mushrooms using different species extraction procedures. Anal. Bioanal. Chem. 384, 902–907.

    Article  PubMed  Google Scholar 

  • Durán, N., Marcato, P.D., De Souza, G.I.H., Alves, O.L., and Esposito, E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3, 203–208.

    Article  Google Scholar 

  • Eszenyi, P., Sztrik, A., Babka, B., and Prokisch, J. 2011. Production of Lactomicrosel® and nanosize (100–500 nm) selenium spheres by probiotic lactic acid bacteria. Int. Conf. Food Eng. Biotechnol. 9, 97–101.

    Google Scholar 

  • Falandysz, J. 2008. Selenium in edible mushrooms. J. Environ. Sci. Health C Rev. Environ. Carcinog. Ecotoxicol. Rev. 26, 256–299.

    Article  CAS  Google Scholar 

  • Fernández-Martínez, A. and Charlet, L. 2009. Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev. Environ. Sci. Biotechnol. 8, 81–110.

    Article  Google Scholar 

  • Fesharaki, P.J., Nazari, P., Shakibaie, M., Rezaie, S., Banoee, M., Abdollahi, M., and Shahverdi, A.R. 2010. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazil J. Microbiol. 41, 461–466.

    Article  CAS  Google Scholar 

  • Gao, X., Zhang, J., and Zhang, L. 2002. Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Adv. Mater. 14, 290–293.

    Article  CAS  Google Scholar 

  • Garbisu, C., Ishii, T., Leighton, T., and Buchanan, B.B. 1996. Bacterial reduction of selenite to elemental selenium. Chem. Geol. 132, 199–204.

    Article  CAS  Google Scholar 

  • Gharieb, M.M., Wilkinson, S.C., and Gadd, G.M. 1995. Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J. Indust. Microbiol. 14, 300–311.

    Article  CAS  Google Scholar 

  • Hunter, W.J. and Kuykendall, L.D. 2007. Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr. Microbiol. 55, 344–349.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, W.J. and Manter, D.K. 2009. Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr. Microbiol. 58, 493–498.

    Article  CAS  PubMed  Google Scholar 

  • Krumov, N., Perner-Nochta, I., Oder, S., Gotcheva, V., Angelov, A., and Posten, C. 2009. Production of inorganic nanoparticles by microorganisms. Chem. Eng. Technol. 32, 1026–1035.

    Article  CAS  Google Scholar 

  • Munoz, A.H.S., Kubachka, K., Wrobel, K., Corona, J.F.G., Yathavakilla, S.K.V., Caruso, J.A., and Wrobel, K. 2006. Se-enriched mycelia of Pleurotus ostreatus: distribution of selenium in cell walls and cell membranes/cytosol. J. Agric. Food Chem. 54, 3440–3444.

    Article  CAS  Google Scholar 

  • Musarrat, J., Dwivedi, S., Singh, B.R., Saquib, Q., and Al-Khedhairy, A.A. 2011. Microbially synthesized nanoparticles: scope and applications, pp. 101–126. In Ahmad, I., Ahmad, F., and Pichtel, J. (eds.), Microbes and microbial technology: agricultural and environmental applications. Springer, New York, USA.

    Chapter  Google Scholar 

  • Narayanan, K.B. and Sakthivel, N. 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Coll. Interf. Sci. 156, 1–13.

    Article  CAS  Google Scholar 

  • Ogra, Y., Ishiwata, K., Encinar, J.R., Lobinski, R., and Suzuki, K.T. 2004. Speciation of selenium in selenium-enriched shiitake mushroom Lentinula edodes. Anal. Bioanal. Chem. 379, 861–866.

    Article  CAS  PubMed  Google Scholar 

  • Oremland, R.S., Herbel, M.J., Switzer Blum, J., Langley, S., Beveridge, T.J., Ajayan, P.M., Sutto, T., Ellis, A.V., and Curran, S. 2004. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl. Environ. Microbiol. 70, 52–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearce, C.I., Coker, V.S., Charnock, J.M., Pattrick, R.A.D., Mosselmans, J.F.W., Law, N., Beveridge, T.J., and Lloyd, J.R. 2008. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19, 1–13.

    Google Scholar 

  • Peng, D., Zhang, J., Liu, Q., and Taylor, E.W. 2007. Size e ect of elemental selenium nanoparticles (Nano-Se) supranutritional levels on selenium accumulation and glutathione S-transferase activity. J. Inorg. Biochem. 101, 1457–1463.

    Article  CAS  PubMed  Google Scholar 

  • Philip, D. 2009. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 73, 374–381.

    Article  Google Scholar 

  • Poluboyarinov, P.A., Vikhreva, V.A., Leshchenko, P.P., Aripovskii, A.V., and Likhachev, A.N. 2009. Elemental selenium formation upon destruction of the organoselenium compound DAFS-25 molecule by growing fungal mycelium. Moscow Univ. Biol. Sci. Bull. 64, 164–168.

    Article  Google Scholar 

  • Popescu, M., Velea, A., and Lőrinczi, A. 2010. A biogenic production of nanoparticles. Digest J. Nanomater. Biostruct. 5, 1035–1040.

    Google Scholar 

  • Prakash, N.T., Sharma, N., Prakash, R., Raina, K.K., Fellowes, J., Pearce, C.I., Lloyd, J.R., and Pattrick, R.A.D. 2009. Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol. Lett. 31, 1857–1862.

    Article  CAS  PubMed  Google Scholar 

  • Prokisch, J. and Zommara, M.A. 2010. Process for producing elemental selenium nanospheres. Patent application publication, No US 2010/0189634 A1.

    Google Scholar 

  • Rai, M. and Duran, N. 2011. Metal nanoparticles in microbiology. Springer, Berlin, Germany.

    Book  Google Scholar 

  • Ramadan, H.E., Razak, A.A., Yousseff, Y.A., and Sedky, N.M. 1988. Selenium metabolism in a strain of Fusarium. Biol. Trace Element Res. 18, 161–170.

    Article  CAS  Google Scholar 

  • Rayman, M.P., Infante, H.G., and Sargent, M. 2008. Food-chain selenium and human health: spotlight on speciation. Br. J. Nutr. 100, 238–253.

    CAS  PubMed  Google Scholar 

  • Reilly, C. 2006. Selenium in food and health. Springer, New York.

    Google Scholar 

  • Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212.

    Article  CAS  PubMed  Google Scholar 

  • Roux, M., Sarret, G., Pignot-Paintrand, I., Fontecave, M., and Coves, J. 2001. Mobilization of selenite by Ralstonia metallidurans CH34. Appl. Environ. Microbiol. 67, 769–773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sastry, M., Ahmad, A., Khan, M.I., and Kumar, R. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85, 162–170.

    CAS  Google Scholar 

  • Tandler, B. 1990. Improved uranyl acetate staining for electron microscopy. J. Electron Microsc. Tech. 16, 1505–1517.

    Article  Google Scholar 

  • Turło, J., Gutkowska, B., and Herold, F. 2010. Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. mycelial extracts. Food Chem. Toxicol. 48, 1085–1091.

    Article  PubMed  Google Scholar 

  • Turło, J., Gutkowska, B., and Malinowska, E. 2007. Relationship between the selenium, selenomethionine, and selenocysteine content of submerged cultivated mycelium of Lentinula edodes (Berk.). Acta Chromatogr. 18, 36–48.

    Google Scholar 

  • Turner, R.J., Weiner, J.H., and Taylor, D.E. 1998. Selenium metabolism in Escherichia coli. BioMetals 11, 223–227.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. 2009. Differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase activity of avian broiler. Biol. Trace Element Res. 128, 184–190.

    Article  CAS  Google Scholar 

  • Wang, H., Zhang, J., and Yu, H. 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Biol. Med. 42, 1524–1533.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, X., and Xu, T. 2008. Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicol. Sci. 101, 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Zhao, G., Zhao, Z., Chen, P., Tong, J., and Hu, X. 2004. Selenium distribution in a Se-enriched mushroom species of the genus Ganoderma. J. Agric. Food Chem. 52, 3954–3959.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Loshchinina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetchinkina, E., Loshchinina, E., Kursky, V. et al. Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol. 51, 829–835 (2013). https://doi.org/10.1007/s12275-013-2689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2689-5

Keywords

Navigation