Skip to main content
Log in

Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: Cellular location of reduced selenium and implications for tolerance

  • Published:
Journal of Industrial Microbiology

Summary

The ability of several filamentous, polymorphic and unicellular fungi to reduce selenite to elemental selenium on solid medium was examined.Fusarium sp. andTrichoderma reeii were the only filamentous fungi, of those tested, which reduced selenite to elemental selenium on Czapek-Dox agar resulting in a red colouration of colonies. Other organisms (Aspergillus niger, Coriolus versicolor, Mucor SK, andRhizopus arrhizus) were able to reduce selenite only on malt extract agar. Several fungi were able to grow in the presence of sodium selenite but were apparently unable to reduce selenite to elemental selenium, indicating that other mechanisms of selenite tolerance were employed, such as reduced uptake and/or biomethylation to less toxic, volatile derivatives. Sodium selenate was more toxic toFusarium sp. than selenite, and the toxicity of both oxyanions was increased in sulphur-free medium, with this effect being more marked for selenate. Scanning electron microscopy ofAspergillus funiculosus andFusarium sp. incubated with sodium selenite showed the presence of needle-like crystals of elemental selenium on the surfaces of hyphae and conidia, while transmission electron microscopy ofA. funiculosus revealed the deposition of electron-dense granules in vacuoles of selenite-treated fungi. Several yeasts were able to grow on MYGP agar containing sodium selenate or sodium selenite at millimolar concentrations. Sone, notablyRhodotorula rubra andCandida lipolytica, and the polymorphic fungusAureobasidium pullulans were also effective at reducing selenite to elemental selenium, resulting in red-coloured colonies.Schizosaccharomyces pombe was able to grow at selenite concentrations up to 5 mmol L−1 without any evidence of reduction, again indicating the operation of other tolerance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, W.N. 1988. Assessment of selenium toxicity in algae using turbidostat culture. Water Res. 22: 939–942.

    Google Scholar 

  2. Bock, A., K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Verprek and F. Zioni. 1991. Selenocysteine: the 21 st amino acid. Mol. Microbiol. 5: 515–520.

    PubMed  Google Scholar 

  3. Breton, A. and Y. Surdin-Kerjan. 1977. Sulphate uptake inSaccharomyces cerevisiae: biochemical and gnetic study. J. Bacteriol. 132: 224–232.

    PubMed  Google Scholar 

  4. Brown, T.A. and A. Shrift. 1980. Assimilation of selenate and selenite bySalmonella typhimurium. Can. J. Microbiol. 26: 671–675.

    PubMed  Google Scholar 

  5. Brown, T.A. and A. Shrift. 1982. Selenium: toxicity and tolerance in higher plants. Biol. Rev. 57: 59–84.

    Google Scholar 

  6. Brown, T.A. and D.G. Smith. 1979. Effects of inorganic selenium compounds on growth, cell size and ultrastructure ofCryptococcus albidus. Microbios Lett. 10: 55–61.

    Google Scholar 

  7. Coch, E.H. and R.C. Greene. 1971. The utilization of selenomethionine byEscherichia coli. Biochim. Biophys. Acta 230: 233–236.

    Google Scholar 

  8. Falcone, G. and W.J. Nickerson. 1963. Reduction of selenite by intact yeast cells and cell free preparations. J. Bacteriol. 85: 754–762.

    PubMed  Google Scholar 

  9. Gadd, G.M. 1993. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11: 297–316.

    Google Scholar 

  10. Gadd, G.M. 1993. Interactions of fungi with toxic metals. New Phytol. 124: 25–60.

    Google Scholar 

  11. Hudman, J.F. and A.R. Glenn. 1984. Selenite uptake and incorporation bySelenomonas ruminatum. Arch. Microbiol. 140: 252–256.

    PubMed  Google Scholar 

  12. Kierans, M., A.M. Staines, H. Bennett and G.M. Gadd. 1991. Silver tolerance and accumulation in yeasts. Biol. Metals 4: 100–106.

    Google Scholar 

  13. Kiffney, P. and A. Knight. 1990. The toxicity and bioaccumulation of selenate, selenite and seleno-l-methionine in the cyanobacteriumAnabaena flos-aquae. Arch. Environ. Contam. Toxicol. 19: 488–494.

    PubMed  Google Scholar 

  14. Lauchli, A. 1993. Selenium in plants: uptake, functions and environmental toxicity. Bot. Acta 106: 455–468.

    Google Scholar 

  15. Lovley, D.R. 1993. Dissimilatory metal reduction. Ann. Rev. Microbiol. 47: 263–290.

    Google Scholar 

  16. Morley, G.F., J.A. Sayer, S.C. Wilkinson, M.M. Gharieb and G.M. Gadd. 1995. Fungal sequestration, mobilization and transformation of metals and metalloids. In: Fungi and Environmental Change (Frankland, J.C., N. Magan and G.M. Gadd, eds), (in press), Cambridge University Press, Cambridge.

    Google Scholar 

  17. Moss, M.O., F. Badii and G. Gibbs. 1987. Reducation of biselenite to elemental selenium byAspergillus parasiticus. Trans. Br. Mycol. Soc. 89: 578–580.

    Google Scholar 

  18. Nickerson, W.J. and G. Falcone. 1963. Enzymatic reduction of selenite. J. Bacteriol. 85: 763–771.

    PubMed  Google Scholar 

  19. Oremland, R.S., J.T. Hollibaugh, A.S. Maest, T.S. Presser, L.G. Miller and C.W. Culbertson. 1989. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 55: 2333–2343.

    Google Scholar 

  20. Oremland, R.S., N.A. Steinberg, T.S. Presser and L.G. Miller. 1991. In situ bacterial selenate reduction in the agricultural drainage systems of Western Nevada. Appl. Environ. Microbiol. 57: 615–617.

    PubMed  Google Scholar 

  21. Ramadan, S.A., A.A. Razak, Y.A. Yousseff and N.M. Sedky. 1988. Selenium metabolism in a strain ofFusarium. Biol. Trace Element Res. 18: 161–170.

    Google Scholar 

  22. Stadtman, T.C. 1990. Selenium biochemistry. Annu. Rev. Biochem. 59: 111–127.

    PubMed  Google Scholar 

  23. Steinberg, N.A. and R.S. Oremland. 1990. Dissimilatory selenate reduction potentials in a diversity of sediment types. Appl. Environ. Microbiol. 56: 3550–3557.

    Google Scholar 

  24. Thompson-Eagle, E.T. and W.T. Frankenberger. 1992. Bioremediation of soils contaminated with selenium. Adv. Soil Sci. 17: 262–310.

    Google Scholar 

  25. Thompson-Eagle, E.T., W.T. Frankenberger and K.E. Longley. 1991. Removal of selenium from agricultural drainage water through soil transformation. In: The Economics and Management of Water and Drainage in Agriculture (Dinar, A. and D. Zilberman, eds), pp. 169–186, Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  26. Tweedie, J.W. and I.H. Segal. 1970. Specificity of transport processes for sulfur, selenium and molybdenum anions by filamentous fungi. Biochim. Biophys. Acta 196: 95–106.

    PubMed  Google Scholar 

  27. Weiss, K.F., C. Ayres and A.A. Kraft. 1965. Inhibitory action of selenite onEscherichia coli, Proteus vulgaris andSalmonella thompson. J. Bacteriol. 90: 857–862.

    PubMed  Google Scholar 

  28. Weissman, G.S. and S.F. Trelease. 1955. Influence of sulfur on the toxicity of selenium toAspergillus. Am. J. Bot. 42: 489–495.

    Google Scholar 

  29. Wheeler, A., R. Zingaro, K. Irgolic and N. Bottino. 1982. The effect of selenate, selenite and sulphate on the growth of six unicellular marine algae. J. Exp. Mar. Biol. Ecol. 57: 181–194.

    Google Scholar 

  30. White, C. and G.M. Gadd. 1995. Reduction of metal cations and oxyanions by anaerobic and metal-resistant microorganisms: chemistry, physiology and potential for the control and bioremediation of toxic metal pollution. In: Extremophiles: Microbial Life in Extreme Environments (Hoshikori, K. and W.G. Grant, eds), (in press), Wiley, New York.

    Google Scholar 

  31. Zieve, R., P.J. Ansell, T.W.K. Young and P.J. Peterson. 1985. Selenium volatilization byMortierella species. Trans. Br. Mycol. Soc. 84: 177–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharieb, M.M., Wilkinson, S.C. & Gadd, G.M. Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: Cellular location of reduced selenium and implications for tolerance. Journal of Industrial Microbiology 14, 300–311 (1995). https://doi.org/10.1007/BF01569943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569943

Key words

Navigation