Skip to main content

Advertisement

Log in

Selenium environmental cycling and bioavailability: a structural chemist point of view

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Selenium is usually known as the ‘double-edged sword element’ for its dual toxic and beneficial character to health. Since the pioneer works by Schwarz and Foltz on the relationships between selenium deficiency and liver, muscle and heart diseases, many efforts have been undertaken to better understand the role of selenium in health. At the same time, an increasing number of publications have appeared during these last years on the selenium physico–chemical interactions within the environment. Both types of research represent ongoing efforts to correctly estimate the bioavailability of selenium species for health and the environment. Redox reactions, diffusion, adsorption and precipitation processes or interactions with organic matter and biota govern the speciation and mobility of selenium in the environment. This review intends to emphasize and collect the important advances made during these last years in the mechanistic understanding of processes which govern selenium cycling and bioavailability, like adsorption at the mineral/water interface, precipitation of elemental selenium, or bioavailability of nanoscaled precipitates. The advent of powerful spectroscopic techniques, like X-ray absorption spectroscopy, has allowed the structural description of adsorption and substitution processes that selenium undergoes in a variety of minerals. These and other structural details about selenium precipitates are reviewed here, together with their relationships to the bioavailability of the element in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrams MM, Burau RG, Zasoski RJ (1990) Organic Selenium Distribution in Selected California Soils. Soil Sci Soc Am J 54:979–982

    CAS  Google Scholar 

  • Abu-Erreish GM, Whitehead EI, Olson OE (1968) Evolution of volatile selenium from soils. Soil Sci 106:415–420

    Article  CAS  Google Scholar 

  • Alexandratos VG, Elzinga EJ, Reeder RJ (2007) Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim Cosmochim Acta 71:4172–4187

    Article  CAS  Google Scholar 

  • Amouroux D, Pecheyran C, Donard OFX (2000) Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions. Appl Organomet Chem 14:236–244

    Article  CAS  Google Scholar 

  • Amweg EL, Stuart DL, Weston DP (2003) Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water. Aquat Toxicol 63:13–25

    Article  CAS  Google Scholar 

  • ANDRA (2005) Dossier 2005 Argile. Evaluation de surete du stockage geologique. Agence National pour la gestion des Dechets Radioactifs, Paris

  • Astratinei V, van Hullebusch E, Lens P (2006) Bioconversion of selenate in methanogenic anaerobic granular sludge. J Environ Qual 35:1873–1883

    Article  CAS  Google Scholar 

  • Atkinson R, Aschmann SM, Hasegawa D, Thompsoneagle ET, Frankenberger WT (1990) Kinetics of the atmospherically important reactions of dimethyl selenide. Environ Sci Technol 24:1326–1332

    Article  CAS  Google Scholar 

  • Bai SH, Thomas C, Rawat A, Ahsan F (2006) Recent progress in dendrimer-based nanocarriers. Crit Rev Ther Drug Carrier Syst 23:437–495

    CAS  Google Scholar 

  • Balistrieri LS, Chao TT (1987) Selenium adsorption by goethite. Soil Sci Soc Am J 51:1145–1151

    CAS  Google Scholar 

  • Ball S, Milne J (1995) Studies on the interaction of selenite and selenium withy sulfur donors 3 Sulfite. Can J Chem-Revue Canadienne De Chimie 73:716–724

    Article  CAS  Google Scholar 

  • Banuelos GS, Lin ZQ (2007) Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein. Environ Pollut 150:306–312

    Article  CAS  Google Scholar 

  • Banuelos GS, Lin ZQ, Arroyo I, Terry N (2005) Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere 60:1203–1213

    Article  CAS  Google Scholar 

  • BarYosef B, Meek D (1987) Selenium sorption by kaolinite and montmorillonite. Soil Sci 144:11–19

    Article  CAS  Google Scholar 

  • Basaglia M, Toffanin A, Baldan E, Bottegal M, Shapleigh JP, Casella S (2007) Selenite-reducing capacity of the copper-containing nitrite reductase of Rhizobium sullae. FEMS Microbiol Lett 269:124–130

    Article  CAS  Google Scholar 

  • Berzelius JJ (1817) Lettre de M. Berzelius a M. Berthollet sur deux metaux nouveaux. Annales de Chimie et de Physique 7:199–207

    Google Scholar 

  • Berzelius JJ (1818) Recherches sur un nouveau corps mineral trouve dans le souffre fabrique a Fahlun. Annales de Chimie et de Physique 9:160–180 (225–267, 337–365)

    Google Scholar 

  • Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov: two Haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  CAS  Google Scholar 

  • Boechat CB, Eon JG, Rossi AM, Perez CAD, San Gil RAD (2000) Structure of vanadate in calcium phosphate and vanadate apatite solid solutions. Phys Chem Chem Phys 2:4225–4230

    Article  Google Scholar 

  • Bonhoure I, Baur I, Wieland E, Johnson CA, Scheidegger AM (2006) Uptake of Se(IV/VI) oxyanions by hardened cement paste and cement minerals: an X-ray absorption spectroscopy study. Cem Concr Res 36:91–98

    Article  CAS  Google Scholar 

  • Boyle-Wight EJ, Katz LE, Hayes KF (2002) Spectroscopic studies of the effects of selenate and selenite on cobalt sorption to gamma-Al2O3. Environ Sci Technol 36:1219−1225

    Article  CAS  Google Scholar 

  • Breynaert E, Bruggeman C, Maes A (2008) XANES–EXAFS analysis of se solid-phase reaction products formed upon contacting Se(IV) with FeS2 and FeS. Environ Sci Technol 42:3595–3601

    Article  CAS  Google Scholar 

  • Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium-tolerant astragalus species. Plant Physiol 67:1051–1053

    Article  CAS  Google Scholar 

  • Bruggeman C, Maes A, Vancluysen J, Vandenmussele P (2005) Selenite reduction in boom clay: effect of FeS2, clay minerals and dissolved organic matter. Environ Pollut 137:209–221

    Article  CAS  Google Scholar 

  • Bruggeman C, Maes A, Vancluysen J (2007) The interaction of dissolved boom clay and gorleben humic substances with selenium oxyanions (selenite and selenate). Appl Geochem 22:1371–1379

    Article  CAS  Google Scholar 

  • Burk RF, Foster KA, Greenfie PM, Kiker KW (1974) Binding of simultaneously administered inorganic selenium and mercury to a rat plasma-protein (37894). Proc Soc Exp Biol Med 145:782–785

    CAS  Google Scholar 

  • Byers HG, Miller JT, Williams KT, Lakin HW (1938) Selenium occurrence in certain soils in the United States with a discussion of related topics. Third Report U.S.D.A. Tech Bul 601., US

  • Cantafio AW, Hagen KD, Lewis GE, Bledsoe TL, Nunan KM, Macy JM (1996) Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl Environ Microbiol 62:3298–3303

    CAS  Google Scholar 

  • Catalano JG, Zhang Z, Fenter P, Bedzyk MJ (2006) Inner-sphere adsorption geometry of Se(IV) at the hematite (100)—water interface. J Colloid Interface Sci 297:665−671

    Article  CAS  Google Scholar 

  • Cesarini JP (2004) Le selenium: actualites. John Libbey Eurotext, Paris

    Google Scholar 

  • Chabroullet C (2007) Etude de la remobilisation d’elements traces a partir d’un sol de surface contamine: influence du vieillissement des composes organiques du sol sur la remobilisation du selenium. Thesis of the University of Grenoble p. 234 Grenoble

  • Charlet L, Scheinost AC, Tournassat C, Greneche JM, Gehin A, Fernandez-Martinez A, Coudert S, Tisserand D, Brendle J (2007) Electron transfer at the mineral/water interface: selenium reduction by ferrous iron sorbed on clay. Geochim Cosmochim Acta 71:5731–5749

    Article  CAS  Google Scholar 

  • Charter RA, Tabatabai MA, Schafer JW (1995) Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks. Commun Soil Sci Plant Anal 26:3051–3062

    Article  CAS  Google Scholar 

  • Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–25

    Article  CAS  Google Scholar 

  • Combs GF, Garbisu C, Yee BC, Yee A, Carlson DE, Smith NR, Magyarosy AC, Leighton T, Buchanan BB (1996) Bioavailability of selenium accumulated by selenite-reducing bacteria. Biol Trace Elem Res 52:209–225

    Article  CAS  Google Scholar 

  • Cutter GA (1982) Selenium in reducing waters. Science 217:829–831

    Article  CAS  Google Scholar 

  • Cutter GA, Bruland KW (1984) The marine biogeochemistry of selenium—a re-evaluation. Limnol Oceanogr 29:1179–1192

    Article  CAS  Google Scholar 

  • Davidson DF, Powers HA (1959) Selenium content of some volcanic rocks from Western United States and Hawaiian Islands. Bull Geol Surv US 1084(C):69–81

    Google Scholar 

  • Davis JA, Leckie JO (1980) Surface-ionization and complexation at the oxide–water interface 3 adsorption of anions. J Colloid Interf Sci 74:32–43

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (1999) Adsorption–desorption reactions of selenium in some soils of India. Geoderma 93:19–31

    Article  CAS  Google Scholar 

  • Dhillon SK, Dhillon KS (2000) Selenium adsorption in soils as influenced by different anions. J Plant Nutr Soil Sci-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 163:577–582

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. In: Sparks D (ed) Advances in agronomy, 1st edn. Elsevier, Amsterdam, pp 119–184

    Google Scholar 

  • Dhillon SK, Dhillon KS, Kohli A, Khera KL (2008) Evaluation of leaching and runoff losses of selenium from seleniferous soils through simulated rainfall. J Plant Nutr Soil Sci-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 171:187–192

    Article  CAS  Google Scholar 

  • Doran JW, Alexander M (1977a) Microbial formation of volatile selenium-compounds in soil. Soil Sci Soc Am J 41:70–73

    CAS  Google Scholar 

  • Doran JW, Alexander M (1977b) Microbial transformations of selenium. Appl Environ Microbiol 33:31–37

    CAS  Google Scholar 

  • Dowdle PR, Oremland RS (1998) Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ Sci Technol 32:3749–3755

    Article  CAS  Google Scholar 

  • Duc M, Lefevre G, Fedoroff M, Jeanjean J, Rouchaud JC, Monteil-Rivera F, Dumonceau J, Milonjic S (2003) Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J Environ Radioactiv 70:61–72

    Article  CAS  Google Scholar 

  • Dungan RS, Yates SR, Frankenberger WT (2002) Volatilization and degradation of soil-applied dimethylselenide. J Environ Qual 31:2045–2050

    CAS  Google Scholar 

  • Dynes JJ, Huang PM (1997) Influence of organic acids on selenite sorption by poorly ordered aluminum hydroxides. Soil Sci Soc Am J 61:772–783

    CAS  Google Scholar 

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    Article  CAS  Google Scholar 

  • Eisler R (1985) Selenium hazards to fish, wildlife and invertebrates: a synoptic review. US Fish and Wildlife Service Biological Report, Maryland

    Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  Google Scholar 

  • Encinar JR, Ruzik R, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Detection of selenocompounds in a tryptic digest of yeast selenoprotein by MALDI time-of-flight MS prior to their structural analysis by electrospray ionization triple quadrupole MS. Analyst 128:220–224

    Article  CAS  Google Scholar 

  • Feroci G, Badiello R, Fini A (2005) Interactions between different selenium compounds and zinc, cadmium and mercury. J Trace Elem Med Biol 18:227–234

    Article  CAS  Google Scholar 

  • Ferri T, Sangiorgio P (2001) Selenium speciation in waters: role of dissolved polysaccharides on the mobilization process. Ann Chim 91:229–238

    CAS  Google Scholar 

  • Fevrier L, Martin-Garin A, Leclerc E (2007) Variation of the distribution coefficient (K d) of selenium in soils under various microbial states. J Environ Radioactiv 97:189–205

    Article  CAS  Google Scholar 

  • Filella M, Town RM (2003) Implications of natural organic matter binding heterogeneity on understanding trace metal complexation in aquatic systems. J Phys IV France 107:479–482

    Article  CAS  Google Scholar 

  • Fleet ME, Liu X (2008) Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. Am Mineral 93:1460–1469

    Article  CAS  Google Scholar 

  • Fleming GA (1980) Essential micronutrients II: iodine and selenium. In: Davis BE (ed) Applied soils trace elements, 1st edn. John Wiley & Sons, New York, pp 199–234

    Google Scholar 

  • Fontes DE, Mills AL, Hornberger GM, Herman JS (1991) Physical and chemical factors influencing transport of microorganisms through porous-media. Appl Environ Microbiol 57:2473–2481

    CAS  Google Scholar 

  • Fordyce F (2005) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology, 1st edn. Elsevier, Uppsala, pp 373–415

    Google Scholar 

  • Fordyce F (2007) Selenium geochemistry and health. Ambio 36:94–97

    Article  CAS  Google Scholar 

  • Foster AL, Brown GE, Parks GA (2003) X-ray absorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochim Cosmochim Acta 67:1937–1953

    Article  CAS  Google Scholar 

  • Francis AJ, Duxbury JM, Alexander M (1974) Evolution of dimethylselenide from soils. Appl Microbiol 28:248–250

    CAS  Google Scholar 

  • Frankenberger WT, Karlson U (1994) Soil-management factors affecting volatilization of selenium from dewatered sediments. Geomicrobiol J 12:265–278

    Article  CAS  Google Scholar 

  • Frost RR, Griffin RA (1977) Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay–minerals. Soil Sci Soc Am J 41:53–57

    CAS  Google Scholar 

  • Fujita M, Ike M, Kashiwa M, Hashimoto R, Soda S (2002) Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp SF-1. Biotechnol Bioeng 80:755–761

    Article  CAS  Google Scholar 

  • Fukushi K, Sverjensky DA (2007) A surface complexation model for sulfate and selenate on iron oxides consistent with spectroscopic and theoretical molecular evidence. Geochim Cosmochim Acta 71:1–24

    Article  CAS  Google Scholar 

  • Ganje TJ, Whitehead EI (1958) Evolution of volatile selenium from a pierre shale supplied with selenium-75 as selenite or selenate. Proc S D Acad Sci 37:81–84

    CAS  Google Scholar 

  • Gao XY, Zhang JS, Zhang L (2002) Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Adv Mater 14:290–294

    Article  CAS  Google Scholar 

  • Géhin A, Greneche J-M, Tournassat C, Brendle J, Rancourt DG, Charlet L (2007) Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral. Geochim Cosmochim Acta 71:863–876

    Article  CAS  Google Scholar 

  • Ghosh A, Mohod AM, Paknikar KM, Jain RK (2008) Isolation and characterization of selenite- and selenate-tolerant microorganisms from selenium-contaminated sites. World J Microbiol Biotechnol 24:1607–1611

    Article  CAS  Google Scholar 

  • Goh KH, Lim TT (2004) Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption. Chemosphere 55:849–859

    Article  CAS  Google Scholar 

  • Gruebel KA, Davis JA, Leckie JO (1988) The feasibility of using sequential extraction techniques for arsenic and selenium in soils and sediments. Soil Sci Soc Am J 52:390–397

    CAS  Google Scholar 

  • Gruebel KA, Davis JA, Leckie JO (1995) Kinetics of oxidation of selenite to selenate in the presence of oxygen, titania, and light. Environ Sci Technol 29:586–594

    Article  CAS  Google Scholar 

  • Gu BQ, Cheng TO (1987) The international textbook of cardiology. Pergamon, New York

    Google Scholar 

  • Guo XM, Sturgeon RE, Mester Z, Gardener GK (2003) Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids. Environ Sci Technol 37:5645–5650

    Article  CAS  Google Scholar 

  • Gustafsson JP, Johnsson L (1994) The association between selenium and humic substances in forested ecosystems–laboratory evidence. Appl Organomet Chem 8:141–147

    Article  CAS  Google Scholar 

  • Hansmann DD, Anderson MA (1985) Using electrophoresis in modeling sulfate, selenite, and phosphate adsorption onto goethite. Environ Sci Technol 19:544–551

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  Google Scholar 

  • Haug A, Graham RD, Christiphersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources effectively to increase the selenium concentration in food. Microb Ecol Health Dis 19:209–228

    Article  CAS  Google Scholar 

  • Hayes KF, Roe AL, Brown GE, Hodgson KO, Leckie JO, Parks GA (1987) In situ X-ray absorption study of surface complexes–selenium oxyanions on α-FeOOH. Science 238:783–786

    Article  CAS  Google Scholar 

  • Hayes KF, Papelis C, Leckie JO (1988) Modeling ionic-strength effects on anion adsorption at hydrous oxide solution interfaces. J Colloid Interf Sci 125:717–726

    Article  CAS  Google Scholar 

  • Haygarth PM (1994) Global importance and global cycling of selenium. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, Inc., Hong Kong, pp 1–28

    Google Scholar 

  • Haygarth PM, Fowler D, Sturup S, Davison BM, Jones KC (1994) Determination of gaseous and particulate selenium over a rural grassland in the UK. Atmos Environ 28:3655–3663

    Article  CAS  Google Scholar 

  • He ZLL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  Google Scholar 

  • Herbel MJ, Blum JS, Oremland RS, Borglin SE (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20:587–602

    Article  CAS  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (1999) Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. J Colloid Interf Sci 210:182–193

    Article  CAS  Google Scholar 

  • Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and Earth systems. Science 319:1631–1635

    Article  CAS  Google Scholar 

  • Hockin SL, Gadd GM (2003) Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69:7063–7072

    Article  CAS  Google Scholar 

  • Huang B, Zhang JS, Hou JW, Chen C (2003) Free radical scavenging efficiency of Nano-Se in vitro. Free Radic Biol Med 35:805–813

    Article  CAS  Google Scholar 

  • Hunter WJ (2007) An Azospira oryzae (syn Dechlorosoma suillum) strain that reduces selenate and selenite to elemental red selenium. Curr Microbiol 54:376–381

    Article  CAS  Google Scholar 

  • Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp Nov.: a selenite-reducing alpha-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460

    Article  CAS  Google Scholar 

  • IAEA (1994) Handbook of parameter values for the prediction of radionuclides transfer in temperate environments. International Atomic Energy Agency, Vienne

    Google Scholar 

  • Ihnat M (1989) Occurence and distribution of Selenium. CRC Press, Florida

    Google Scholar 

  • International Crystal Structure Database (2008). Institut Laue-Langevin. http://icsd.ill.fr

  • Irons R, Carlson BA, Hatfield DL, Davis CD (2006) Both selenoproteins and low molecular weight selenocompounds reduce colon cancer risk in mice with genetically impaired selenoprotein expression. J Nutr 136:1311–1317

    CAS  Google Scholar 

  • Jacobs LW (1989) Selenium in agriculture and the environment. Soil Science of America Special Publication, Wisconsin

    Google Scholar 

  • Jia X, Li N, Chen J (2005) A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci 76:1989–2003

    Article  CAS  Google Scholar 

  • Jinadasa K, Dissanayake CB (1992) The effect of selenium on fluoride–clay interactions—possible environmental–health implications. Environ Geochem Health 14:3–7

    Article  CAS  Google Scholar 

  • Johansson L, Gafvelin G, Arner ESJ (2005) Selenocysteine in proteins—properties and biotechnological use. Biochim Biophys Acta-Gen Subj 1726:1–13

    Article  CAS  Google Scholar 

  • John MK, Saunders WMH, Watkinson JH (1975) Selenium adsorption by New Zealand soils I. Relative adsorption of selenite by representative soils and their relationship to soil properties. NZ J Agric Res 19:143–151

    Google Scholar 

  • Johnson CC, Ge X, Green KA, Liu X (2000a) Selenium distribution in the local environment of selected villages of the Keshan disease belt, Zhangjiakou district, Hebei province, People’s Republic of China. Appl Geochem 15:385–401

    Article  CAS  Google Scholar 

  • Johnson EA, Rudin MJ, Steinberg SM, Johnson WH (2000b) The sorption of selenite on various cement formulations. Waste Manage 20:509–516

    Article  CAS  Google Scholar 

  • Jovari P, Delaplane RG, Pusztai L (2003). Structural models of amorphous selenium. Physical Review B 67

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Florida

    Google Scholar 

  • Kang Y, Yamada H, Kyuma K, Hattori T, Kigasawa S (1991) Selenium in soil humi-acid. Soil Sci Plant Nutr 37:241–248

    CAS  Google Scholar 

  • Karlson U, Frankenberger WT (1989) Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53:749–753

    CAS  Google Scholar 

  • Kenward PA, Fowle DA, Yee N (2006) Microbial selenate sorption and reduction in nutrient limited systems. Environ Sci Technol 40:3782–3786

    Article  CAS  Google Scholar 

  • Kohrle J, Brigelius-Flohe R, Bock A, Gartner R, Meyer O, Flohe L (2000) Selenium in biology: facts and medical perspectives. Biol Chem 381:849–864

    Article  CAS  Google Scholar 

  • Lakin HW (1972) Selenium accumulation in soils and its absorption by plants and animals. Geol Soc Am Bull 83:181–189

    Article  Google Scholar 

  • Lauchli A (1993) Selenium in plants—uptake, functions, and environmental toxicity. Botanica Acta 106:455–468

    CAS  Google Scholar 

  • Lemly AD (1993) Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ Monit Assess 28:83–100

    Article  CAS  Google Scholar 

  • Lemly AD (1997) A teratogenic deformity index for evaluating impacts of selenium on fish populations. Ecotoxicol Environ Saf 37:259–266

    Article  CAS  Google Scholar 

  • Lenz M, Gmerek A, Lens PNL (2006) Selenium speciation in anaerobic granular sludge. Inter J Environ Anal Chem 86:615–627

    Article  CAS  Google Scholar 

  • Lenz M, Smit M, Binder P, van Aelst AC, Lens PNL (2008a) Biological alkylation and colloid formation of selenium in methanogenic UASB reactors. J Environ Qual 37:1691–1700

    Article  CAS  Google Scholar 

  • Lenz M, Van Hullebusch ED, Farges F, Nikitenko S, Borca CN, Grolimund D, Lens PNL (2008b) Selenium speciation assessed by X-ray absorption spectroscopy of sequentially extracted anaerobic biofilms. Environ Sci Technol 42:7587–7593

    Article  CAS  Google Scholar 

  • Lenz M, Van Hullebusch ED, Hommes G, Corvini PFX, Lens PNL (2008c) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42:2184–2194

    Article  CAS  Google Scholar 

  • Levander OA, Burk RF (2006) Update of human dietary standards for selenium. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium its molecular biology and role in human health, 2nd edn. Springer, New York, pp 399–410

    Google Scholar 

  • Li J, Zheng CJ (1990) The handbook of the environmental background values. China Environmental Science Press, Beijing

    Google Scholar 

  • Lo SL, Chen TY (1997) Adsorption of Se(IV) and Se(VI) on an iron-coated sand from water. Chemosphere 35:919–930

    Article  CAS  Google Scholar 

  • Losi ME, Frankenberger WT (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084

    CAS  Google Scholar 

  • Loyo RLD, Nikitenko SI, Scheinost AC, Simonoff M (2008) Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles. Environ Sci Technol 42:2451–2456

    Article  CAS  Google Scholar 

  • Luoma SN, Johns C, Fisher NS, Steinberg NA, Oremland RS, Reinfelder JR (1992) Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ Sci Technol 26:485–491

    Article  CAS  Google Scholar 

  • Mace N, Landesman C, Pointeau I, Grambow B, Giffaut E (2007) Characterisation of thermally altered cement pastes influence on selenite sorption. Adv Cem Res 19:157–165

    Article  CAS  Google Scholar 

  • Macy JM, Michel TA, Kirsch DG (1989) Selenate reduction by a Pseudomonas species—a new mode of anaerobic respiration. FEMS Microbiol Lett 61:195–198

    Article  CAS  Google Scholar 

  • Macy JM, Lawson S, Demolldecker H (1993) Bioremediation of selenium oxyanions in San Joaquin drainage water using Thauera selenatis in a biological reactor system. Appl Microbiol Biotechnol 40:588–594

    Article  CAS  Google Scholar 

  • Maier KJ, Foe CG, Knight AW (1993) Comparative toxicity of selenate, selenite, seleno-dl-methionine and seleno-dl-cystine to Daphnia–Magna. Environ Toxicol Chem 12:755–763

    Article  CAS  Google Scholar 

  • Manceau A, Charlet L (1994) The mechanism of selenate adsorption on goethite and hydrous ferric-oxide. J Colloid Interf Sci 168:87–93

    Article  CAS  Google Scholar 

  • Martens DA, Suarez DL (1999) Transformations of volatile methylated selenium in soil. Soil Biol Biochem 31:1355–1361

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1991) Biogeochemical behavior of selenium in anoxic soils and sediments—an equilibrium thermodynamics approach. J Environ Sci Health A Environ Sci Eng Toxic Hazard Subst Control 26:555–573

    Google Scholar 

  • Mayland HF (1994) Selenium in plant and animal nutrition. In: Frankenberger WT, Benson S (eds) Selenium in the environment, 1st edn. Marcel Dekker, New York, pp 29–46

    Google Scholar 

  • McConnell D, Foreman DW (1978) Model for carbonate apatite. Inorg Chem 17:2039–2040

    Article  CAS  Google Scholar 

  • Minaev VS, Timoshenkov SP, Kalugin VV (2005) Structural and phase transformations in condensed selenium. J Optoelectron Adv Mater 7:1717–1741

    CAS  Google Scholar 

  • Miyagi K, Sampson RW, Tsujino I, Gunther WHH, Krieg M, Sieber F (2003) Proteinated subnanoparticles of elemental selenium potentiate the anti-tumor effect of ionizing radiation and selected chemotherapeutic agents. Proc Am Assoc Cancer Res 44:385

    Google Scholar 

  • Montes-Hernandez G, Fernandez-Martinez A, Charlet L, Renard F, Scheinost AC, Bueno M (2008). Synthesis of a Se(0)/calcite composite using hydrothermal carbonation of Ca(OH)2 coupled to a complex selenocystine fragmentation. Crystal Growth Des 8:2497–2504

    Article  CAS  Google Scholar 

  • Monteil-Rivera F, Fedoroff M, Jeanjean J, Minel L, Barthes MG, Dumonceau J (2000) Sorption of selenite (SeO3 2−) on hydroxyapatite: an exchange process. J Colloid Interf Sci 221:291–300

    Article  CAS  Google Scholar 

  • Moreno-Reyes R, Suetens C, Mathieu F, Begaux F, Zhu D, Rivera MT, Boelaert M, Neve J, Perlmutter N, Vanderpas J (1998) Kashin–Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. N Engl J Med 339:1112–1120

    Article  CAS  Google Scholar 

  • Mosher BW, Duce RA (1987) A global atmospheric selenium budget. J Geophys Res-Atmospheres 92:13289–13298

    Article  CAS  Google Scholar 

  • Mykkanen H, Humaloja T (1984) Effect of lead on the intestinal-absorption of sodium selenite and selenomethionine (Se-75) in chicks. Biol Trace Elem Res 6:11–17

    Article  CAS  Google Scholar 

  • Mykkanen HM, Metsaniitty L (1987) Selenium–mercury interaction during intestinal-absorption of Se-75 compounds in chicks. J Nutr 117:1453–1458

    CAS  Google Scholar 

  • Myneni SCB, Tokunaga TK, Brown GE (1997) Abiotic selenium redox transformations in the presence of Fe(II, III) oxides. Science 278:1106–1109

    Article  CAS  Google Scholar 

  • Nakamaru Y, Tagami K, Uchida S (2005) Distribution coefficient of selenium in Japanese agricultural soils. Chemosphere 58:1347–1354

    Article  CAS  Google Scholar 

  • Nakamaru Y, Tagami K, Uchida S (2006) Effect of phosphate addition on the sorption-desorption reaction of selenium in Japanese agricultural soils. Chemosphere 63:109–115

    Article  CAS  Google Scholar 

  • Narasingarao P, Haggblom MM (2007) Pelobacter seleniigenes sp nov., a selenate respiring bacterium. Int J Syst Evol Microbiol 57:1937–1942

    Article  CAS  Google Scholar 

  • Neal RH (1995) Selenium. Blackie Academic & Professional, London

    Google Scholar 

  • Neal RH, Sposito G (1989) Selenate adsorption on alluvial soils. Soil Sci Soc Am J 53:70–74

    CAS  Google Scholar 

  • Neal RH, Sposito G, Holtzclaw KM, Traina SJ (1987a) Selenite adsorption on alluvial soils. 1. Soil composition and ph effects. Soil Sci Soc Am J 51:1161–1165

    CAS  Google Scholar 

  • Neal RH, Sposito G, Holtzclaw KM, Traina SJ (1987b) Selenite adsorption on alluvial soils. 2. Solution composition effects. Soil Sci Soc Am J 51:1165–1169

    CAS  Google Scholar 

  • Neumann PM, De Souza MP, Pickering IJ, Terry N (2003) Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ 26:897–905

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) Occurrence and distribution of selenium. CRC Press, Florida

    Google Scholar 

  • Nriagu JO (1991) Heavy metals in the environment. CEP Consultants, Edinburgh

    Google Scholar 

  • Ogaard AF (1996) Effect of fresh and composted cattle manure on phosphate retention in soil. Acta Agric Scand B Soil Plant Sci 46:98–105

    Google Scholar 

  • Ogaard AF, Sogn TA, Eich-Greatorex S (2006) Effect of cattle manure on selenate and selenite retention in soil. Nutr Cycl Agroecosyst 76:39–48

    Article  Google Scholar 

  • Oldfield JE (2006) Selenium: a historical perspective. Springer, US

    Google Scholar 

  • Olin A, Nolang G, Osadchii E, Ohman LO, Rosen E (2005) Chemical thermodynamics of selenium. North Holland Elsevier Science Publishers B. V, The Netherlands

    Google Scholar 

  • Oremland RS, Stolz JF (2000) Dissimilatory reduction of selenate and arsenate in nature. In: Lovley DR (ed) Environmental metal–microbe interaction, 1st edn. ASM Press, Washington DC, pp 199–224

    Google Scholar 

  • Oremland RS, Zehr JP (1986) Formation of methane and carbon-dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium. Appl Environ Microbiol 52:1031–1036

    CAS  Google Scholar 

  • Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic-bacteria in sediments and culture—biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343

    CAS  Google Scholar 

  • Oremland RS, Steinberg NA, Maest AS, Miller LG, Hollibaugh JT (1990) Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ Sci Technol 24:1157–1164

    Article  CAS  Google Scholar 

  • Oremland RS, Blum JS, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier FE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain Ses-3. Appl Environ Microbiol 60:3011–3019

    CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  Google Scholar 

  • Papelis C, Brown GE, Parks GA, Leckie JO (1995) X-ray-absorption spectroscopic studies of cadmium and selenite adsorption on aluminum-oxides. Langmuir 11:2041–2048

    Article  CAS  Google Scholar 

  • Parida KM, Gorai B, Das NN, Rao SB (1997) Studies on ferric oxide hydroxides 3. Adsorption of selenite (SeO3 2−) on different forms of iron oxyhydroxides. J Colloid Interf Sci 185:355–362

    Article  CAS  Google Scholar 

  • Peak D (2006) Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. J Colloid Interf Sci 303:337–345

    Article  CAS  Google Scholar 

  • Peak D, Sparks DL (2002) Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ Sci Technol 36:1460–1466

    Article  CAS  Google Scholar 

  • Peak D, Saha UK, Huang PM (2006) Selenite adsorption mechanisms on pure and coated montmorillonite: an EXAFS and XANES spectroscopic study. Soil Sci Soc Am J 70:192–203

    Article  CAS  Google Scholar 

  • Pearce CI, Coker VS, Charnock JM, Pattrick RAD, Mosselmans JFW, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:13

    Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Hong G, Amini A, Bravo RC, Payabyab ST, Terry N (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28:1011–1018

    CAS  Google Scholar 

  • Pointeau I, Hainos D, Coreau N, Reiller P (2006) Effect of organics on selenite uptake by cementitious materials. Waste Manage 26:733–740

    Article  CAS  Google Scholar 

  • Popov AI (1976) Correlation between molecular-structure and properties of amorphous selenium. J Phys C Solid State Phys 9:L675–L677

    Article  CAS  Google Scholar 

  • Presser TS (1994) The Kesterson effect. Environ Manage 18:437–454

    Article  Google Scholar 

  • Presser TS, Ohlendorf HM (1987) Biogeochemical cycling of selenium in the San Joaquin valley, California, USA. Environ Manage 11:805–821

    Article  CAS  Google Scholar 

  • Presser TS, Piper DZ (1998) Mass balance approach to selenium cycling through the San Joaquin valley: from source to river to bay. In: Frankenberger WT, Engberg RA (eds) Environmental chemistry of selenium, 1st edn. CRC Press, New York, pp 153–182

    Google Scholar 

  • Presser TS, Swain WC (1990) Geochemical evidence for Se mobilization by the weathering of pyritic shale, San Joaquin valley, California, USA. Appl Geochem 5:703–717

    Article  CAS  Google Scholar 

  • Ranjard L, Prigent-Combaret C, Nazaret S, Cournoyer B (2002) Methylation of inorganic and organic selenium by the bacterial thiopurine methyltransferase. J Bacteriol 184:3146–3149

    Article  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  Google Scholar 

  • Rayman MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? Br J Nutr 92:557–573

    Article  CAS  Google Scholar 

  • Reeder RJ, Lamble GM, Lee JF, Staudt WJ (1994) Mechanism of SeO4 2− substitution in calcite—an XAFS study. Geochim Cosmochim Acta 58:5639–5646

    Article  CAS  Google Scholar 

  • Reeder RJ, Schoonen MAA, Lanzirotti A (2006) Metal speciation and its role in bioaccessibility and bioavailability. In: Rosso JJ (ed) The emergent field of medical mineralogy and geochemistry, 1st edn. Mineralogical Society of America and the Geochemical Society, USA, pp 59–113

    Google Scholar 

  • Reilly C (1997) Selenium in food and health. Blackie Academic & Professional, London

    Google Scholar 

  • Riveros G, Lincot D, Guillemoles JF, Henriquez R, Schrebler R, Cordova R, Gomez H (2003) Redox and solution chemistry of the SeSO3 2−Zn-EDTA(2-) system and electrodeposition behavior of ZnSe from alkaline solutions. J Electroanal Chem 558:9–17

    Article  CAS  Google Scholar 

  • Robbins CW, Carter DL (1970) Selenium concentrations in phosphorus fertilizer materials and associated uptake by plants. Soil Sci Soc Am Proc 34:506

    Article  CAS  Google Scholar 

  • Roman-Ross G, Cuello GJ, Turrillas X, Fernandez-Martinez A, Charlet L (2006) Arsenite sorption and co-precipitation with calcite. Chem Geol 233:328–336

    Article  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium: geobotany, biochemistry toxicity and nutrition. Academic Press, New York

    Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430

    Article  CAS  Google Scholar 

  • Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M, Mosby DE, Casteel SW, Berti W, Carpenter M, Edwards D, Cragin D, Chappell W (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crusts: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Saeki K, Matsumoto S, Tatsukawa R (1995) Selenite adsorption by manganese oxides. Soil Sci 160:265–272

    Article  CAS  Google Scholar 

  • Sarathchandra SU, Watkinson JH (1981) Oxidation of elemental selenium to selenite by Bacillus megaterium. Science 211:600–601

    Article  CAS  Google Scholar 

  • Sarin L, Yan A, Sanchez V, Kane A, Hurt RH (2007) Carbon nanoparticles as a vehicle for cell delivery of nano selenium. Proceedings of the American Chemical Society 233rd Meeting, Symposium “Carbon Nanoparticles and Nanotubes”, Chicago

  • Sarret G, Avoscan L, Carriere M, Collins R, Geoffroy N, Carrot F, Coves J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microbiol 71:2331–2337

    Article  CAS  Google Scholar 

  • Scheidegger AM, Grolimund D, Cui D, Devoy J, Spahiu K, Wersin P, Bonhoure I, Janousch M (2003) Reduction of selenite on iron surfaces: a micro-spectroscopic study. J Phys Iv 104:417–420

    Article  CAS  Google Scholar 

  • Scheinost AC, Charlet L (2008) Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ Sci Technol 42:1984–1989

    Article  CAS  Google Scholar 

  • Scheinost AC, Kirsch R, Banerjee D, Fernandez-Martinez A, Zaenker H, Funke H, Charlet L (2008). X-ray absorption spectroscopy investigation of selenite reduction by Fe(II)-bearing minerals. J Contam Hydrol 102:228–245

    Article  CAS  Google Scholar 

  • Schlekat CE, Dowdle PR, Lee BG, Luoma SN, Oremland RS (2000) Bioavailability of particle-associated Se to the bivalve Potamocorbula amurensis. Environ Sci Technol 34:4504–4510

    Article  CAS  Google Scholar 

  • Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656

    CAS  Google Scholar 

  • Schulthess CP, Hu ZQ (2001) Impact of chloride anions on proton and selenium adsorption by an aluminum oxide. Soil Sci Soc Am J 65:710–718

    CAS  Google Scholar 

  • Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Soc 79:3292–3293

    CAS  Google Scholar 

  • Seby F, Gautier MP, Lespes G, Astruc M (1997) Selenium speciation in soils after alkaline extraction. Sci Total Environ 207:81–90

    Article  CAS  Google Scholar 

  • Seby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25°C. Chem Geol 171:173–194

    Article  CAS  Google Scholar 

  • Seiler RL (1998) Prediction of lands susceptible to irrigation-induced selenium contamination of water. CRC Press, New York

    Google Scholar 

  • Selim HM, Sparks D (2001) Heavy metals release in soils. CRC Press, Boca Raton

    Google Scholar 

  • Shongsheng J, Jingru G, Shan J, Chunsheng L, Anzhi C, Ming H, Shaoyong W, Shilin L (1997) Determination of the half-life of 79Se with the accelerator mass spectrometry technique. Nucl Instrum Methods B 123:405–409

    Article  Google Scholar 

  • Shrift A (1964) Selenium cycle in nature. Nature 201:1304–1305

    Article  CAS  Google Scholar 

  • Sieber F (2003) Selenium in oxidation state zero is a potent and selective anti-leukemia/lymphoma agent. Exp Hematol 31:119–120

    Google Scholar 

  • Sieber F, Gunther WHH, Daziano JP, Krieg-Kowald M, Bousbaa J, RJ Bula (2007) Patent: method of making and the use of cytotoxic agents containing elemental selenium. QB, LLP, USA

    Google Scholar 

  • Sirichakwal PP, Puwastien P, Polngam J, Kongkachuichai R (2005) Selenium content of Thai foods. J Food Compost Anal 18:47–59

    Article  CAS  Google Scholar 

  • Sneddon IR, Garelick H, Valsami-Jones E (2005) An investigation into arsenic(V) removal from aqueous solutions by hydroxylapatite and bone-char. Mineral Mag 69:769–780

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  Google Scholar 

  • Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64

    Article  CAS  Google Scholar 

  • Sposito G (2004) The surface chemistry of natural particles. Oxford University Press, New York

    Google Scholar 

  • Steinberg NA, Oremland RS (1990) Dissimilatory selenate reduction potentials in a diversity of sediment types. Appl Environ Microbiol 56:3550–3557

    CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  CAS  Google Scholar 

  • Stolz JE, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  Google Scholar 

  • Su CM, Suarez DL (2000) Selenate and selenite sorption on iron oxides: an infrared and electrophoretic study. Soil Sci Soc Am J 64:101–111

    CAS  Google Scholar 

  • Sundberg-Jones SE, Hassan SM (2007) Macrophyte sorption and bioconcentration of elements in a pilot constructed wetland for flue gas desulfurization wastewater treatment. Water Air Soil Pollut 183:187–200

    Article  CAS  Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    Article  CAS  Google Scholar 

  • Tam SC, Chow A, Hadley D (1995) Effects of organic-component on the immobilization of selenium on iron oxyhydroxide. Sci Total Environ 164:1–7

    Article  CAS  Google Scholar 

  • Tamari Y, Ogawa H, Fukumoto Y, Tsuji H, Kusaka Y (1990) Selenium content and its oxidation-state in igneous rocks, rock-forming minerals, and a reservoir sediment. Bull Chem Soc Jpn 63:2631–2638

    Article  CAS  Google Scholar 

  • Tastet L, Schaumloffel D, Lobinski R (2008) ICP-MS-assisted proteomics approach to the identification of selenium-containing proteins in selenium-rich yeast. J Anal At Spectrom 23:309–317

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  Google Scholar 

  • Tessier E, Amouroux D, Abril G, Lemaire E, Donard OFX (2002) Formation and volatilisation of alkyl-iodides and -selenides in macrotidal estuaries. Biogeochemistry 59:183–206

    Article  CAS  Google Scholar 

  • Thayer JS (2002) Biological methylation of less-studied elements. Appl Organomet Chem 16:677–691

    Article  CAS  Google Scholar 

  • Virtamo J, Valkeila E, Alfthan G, Punsar S, Huttunen JK, Karvonen MJ (1985) Serum selenium and the risk of coronary heart-disease and stroke. Am J Epidemiol 122:276–282

    CAS  Google Scholar 

  • Virupaksha TK, Shrift A (1965) Biochemical differences between selenium accumulator and non-accumulator Astragalus species. Biochimica Biophysica Acta 107:69–80

    CAS  Google Scholar 

  • Wang MC, Chen HM (2003) Forms and distribution of selenium at different depths and among particle size fractions of three Taiwan soils. Chemosphere 52:585–593

    Article  CAS  Google Scholar 

  • Wang ZJ, Gao YX (2001) Biogeochemical cycling of selenium in Chinese environments. Appl Geochem 16:1345–1351

    Article  CAS  Google Scholar 

  • Wang ZJ, Xu Y, Peng A (1996) Influences of fulvic acid on bioavailability and toxicity. Biol Trace Elem Res 55:147–162

    Article  CAS  Google Scholar 

  • Watts CA, Ridley H, Condie KL, Leaver JT, Richardson DJ, Butler CS (2003) Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol Lett 228:273–279

    Article  CAS  Google Scholar 

  • Wen HJ, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165

    Article  CAS  Google Scholar 

  • Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388:997–1006

    Article  CAS  Google Scholar 

  • White AF, Benson SM, Yee AW, Wollenberg HA, Flexser S (1991) Groundwater contamination at the Kesterson reservoir, California 2. Geochemical parameters influencing selenium mobility. Water Resour Res 27:1085–1098

    Article  CAS  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  CAS  Google Scholar 

  • Wijnja H, Schulthess CP (2000a) Interaction of carbonate and organic anions with sulfate and selenate adsorption on an aluminum oxide. Soil Sci Soc Am J 64:898–908

    CAS  Google Scholar 

  • Wijnja H, Schulthess CP (2000b) Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces. J Colloid Interf Sci 229:286–297

    Article  CAS  Google Scholar 

  • Yamada H, Kase Y, Usuki M, Kajiyama S, Yonebayashi K (1999) Selective determination and formation of elemental selenium in soils. Soil Sci Plant Nutr 45:403–408

    CAS  Google Scholar 

  • Yan R, Gauthier D, Flamant G, Peraudeau G (2001) Fate of selenium in coal combustion: volatilization and speciation in the flue gas. Environ Sci Technol 35:1406–1410

    Article  CAS  Google Scholar 

  • Yannopoulos SN, Andrikopoulos KS (2004) Raman scattering study on structural and dynamical features of noncrystalline selenium. J Chem Phys 121:4747–4758

    Article  CAS  Google Scholar 

  • Yu TR (1997) Chemistry of variable charge soils. Oxford University Press, New York

    Google Scholar 

  • Yudovich YE, Ketris MP (2006) Selenium in coal: a review. Int J Coal Geol 67:112–126

    Article  CAS  Google Scholar 

  • Zawislanski PT, Benson SM, Terberg R, Borglin SE (2003) Selenium speciation, solubility, and mobility in land-disposed dredged sediments. Environ Sci Technol 37:2415–2420

    Article  CAS  Google Scholar 

  • Zehr JP, Oremland RS (1987) Reduction of selenate to selenide by sulfate-respiring bacteria-experiments with cell-suspensions and estuarine sediments. Appl Environ Microbiol 53:1365–1369

    CAS  Google Scholar 

  • Zhang YQ, Frankenberger WT (1999) Effects of soil moisture, depth, and organic amendments on selenium volatilization. J Environ Qual 28:1321–1326

    Article  CAS  Google Scholar 

  • Zhang YQ, Moore JN (1996) Selenium fractionation and speciation in a wetland system. Environ Sci Technol 30:2613–2619

    Article  CAS  Google Scholar 

  • Zhang PC, Sparks DL (1990) Kinetics of selenate and selenite adsorption desorption at the goethite water interface. Environ Sci Technol 24:1848–1856

    Article  CAS  Google Scholar 

  • Zhang JS, Gao XY, Zhang LD, Bao YP (2001) Biological effects of a nano red elemental selenium. Biofactors 15:27–38

    Article  Google Scholar 

  • Zhang YQ, Zahir ZA, Frankenberger WT (2003) Factors affecting reduction of selenate to elemental selenium in agricultural drainage water by Enterobacter taylorae. J Agric Food Chem 51:7073–7078

    Article  CAS  Google Scholar 

  • Zhang YQ, Zahir ZA, Frankenberger WT (2004) Fate of colloidal-particulate elemental selenium in aquatic systems. J Environ Qual 33:559–564

    Article  CAS  Google Scholar 

  • Zhang ES, Wang HL, Yan XX, Zhang LD (2005) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76:1099–1109

    Article  CAS  Google Scholar 

  • Zieve R, Peterson PJ (1981) Factors influencing the volatilization of selenium from soil. Sci Total Environ 19:277–284

    Article  CAS  Google Scholar 

  • Zuyi T, Taiwei C, Jinzhou D, XiongXin D, Yingjie G (2000) Effect of fulvic acids on sorption of U(VI), Zn, Yb, I and Se(IV) onto oxides of aluminum, iron and silicon. Appl Geochem 15:133–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Charlet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Martínez, A., Charlet, L. Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8, 81–110 (2009). https://doi.org/10.1007/s11157-009-9145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-009-9145-3

Keywords

Navigation