Skip to main content
Log in

Multi-layer hierarchical cellulose nanofibers/carbon nanotubes/vinasse activated carbon composite materials for supercapacitors and electromagnetic interference shielding

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing porous self-supporting electrodes with excellent conductivity, good mechanical properties, and high electrochemical activity is crucial for constructing electrode materials with lightweight, ultra-thin, flexible, and high capacitance performance. In this work, we prepared a cellulose nanofibers (CNFs)/carbon nanotubes (CNTs)/vinasse activated carbon (VAC) (CCV) composite material with a multi-layer hierarchical conductive structure through simple vacuum filtration and freeze-drying. In this composite material, the self-assembly of CNF provides the main skeleton structure of a multi-layer hierarchical structure. CNT provides a fast path for the rapid transfer of electrons and is beneficial for the loss of electromagnetic waves. VAC provides sufficient double layer performance. The synergistic effect of the above three endows CCV composite materials with excellent energy storage performance and electromagnetic interference (EMI) shielding performance. In addition, we endowed the CCV composite with a certain shape and performance by introducing a vitrimer polymer with a dynamic cross-linked network structure. In summary, thanks to the synergistic effect of various components in the multi-layer hierarchical structure, CCV composite materials exhibit excellent integration performance, especially stable energy storage performance and EMI shielding performance. These significant properties make CCV composite materials have great application prospects in the fields of energy storage and intelligent EMI shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mao, Z. F.; Shi, X. J.; Zhang, T. Q.; Liang, P. J.; Wang, R.; Jin, J.; He, B. B.; Gong, Y. S.; Wang, Q.; Tong, X. L. et al. Mechanically flexible V3S4@carbon composite fiber as a high-capacity and fast-charging anode for sodium-ion capacitors. Rare Met. 2023, 42, 2633–2642.

    Article  CAS  Google Scholar 

  2. Xiong, C. Y.; Wang, T. X.; Han, J.; Zhang, Z.; Ni, Y. H. Recent research progress of paper-based supercapacitors based on cellulose. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12651.

  3. Feng, X.; Shi, X. Y.; Ning, J.; Wang, D.; Zhang, J. C.; Hao, Y.; Wu, Z. S. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. eScience 2021, 1, 124–140.

    Article  Google Scholar 

  4. Zhu, Q. C.; Zhao, D. Y.; Cheng, M. Y.; Zhou, J. Q.; Owusu, K. A.; Mai, L. Q.; Yu, Y. A new view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 2019, 9, 1901081.

    Article  Google Scholar 

  5. Xiong, C. Y.; Zheng, C. M.; Jiang, X.; Xiao, X. F.; Wei, H. Y.; Zhou, Q. S.; Ni, Y. H. Recent progress of green biomass based composite materials applied in supercapacitors, sensors, and electrocatalysis. J. Energy Storage 2023, 72, 108633.

    Article  Google Scholar 

  6. Shen, M. X.; Liu, J.; Li, J.; Duan, C.; Xiong, C. Y.; Zhao, W.; Dai, L.; Wang, Q. Y.; Yang, H.; Ni, Y. H. Breaking the N-limitation with N-enriched porous submicron carbon spheres anchored Fe singleatom catalyst for superior oxygen reduction reaction and Zn-air batteries. Energy Stor. Mater. 2023, 59, 102790.

    Google Scholar 

  7. Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

    Article  ADS  CAS  Google Scholar 

  8. He, Q. M.; Tao, J. R.; Yang, Y.; Yang, D.; Zhang, K.; Wang, M. Effect surface micro-wrinkles and micro-cracks on microwave shielding performance of copper-coated carbon nanotubes/polydimethylsiloxane composites. Carbon 2023, 213, 118216.

    Article  CAS  Google Scholar 

  9. Guo, Y. Q.; Pan, L. L.; Yang, X. T.; Ruan, K. P.; Han, Y. X.; Kong, J.; Gu, J. W. Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos. Part A: Appl. Sci. Manuf. 2019, 124, 105484.

    Article  CAS  Google Scholar 

  10. Yang, Y.; Luo, C. L.; Chen, X. D.; Wang, M. Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in-situ mechanical exfoliation and crosslinking with cations. Compos. Sci. Technol. 2023, 233, 109913.

    Article  CAS  Google Scholar 

  11. Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 62, e202216093.

    Article  CAS  Google Scholar 

  12. Gao, Y. N.; Wang, Y.; Yue, T. N.; Wang, M. Achieving absorptiontype electromagnetic shielding performance in silver micro-tubes/barium ferrites/poly(lactic acid) composites via enhancing impedance matching and electric-magnetic synergism. Compos. B. Eng. 2023, 249, 110402.

    Article  CAS  Google Scholar 

  13. Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

    Article  ADS  CAS  Google Scholar 

  14. He, Q. M.; Tao, J. R.; Yang, D.; Yang, Y.; Wang, M. Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: A simulation and experimental study. Chem. Eng. J. 2023, 454, 140162.

    Article  CAS  Google Scholar 

  15. Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull., in press, https://doi.org/10.1016/j.scib.2023.07.046.

  16. Feng, X.; Ning, J.; Wang, B. Y.; Guo, H. B.; Xia, M. Y.; Wang, D.; Zhang, J. C.; Wu, Z. S.; Hao, Y. Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. Nano Energy 2020, 72, 104741.

    Article  CAS  Google Scholar 

  17. Lai, H. R.; Li, W. Y.; Xu, L.; Wang, X. M.; Jiao, H.; Fan, Z. Y.; Lei, Z. L.; Yuan, Y. Scalable fabrication of highly crosslinked conductive nanofibrous films and their applications in energy storage and electromagnetic interference shielding. Chem. Eng. J. 2020, 400, 125322.

    Article  CAS  Google Scholar 

  18. Xiong, C. Y.; Zhang, Y. K.; Ni, Y. H. Recent progress on development of electrolyte and aerogel electrodes applied in supercapacitors. J. Power Sources 2023, 560, 232698.

    Article  CAS  Google Scholar 

  19. Xiong, C. Y.; Zhang, Y. K.; Xu, J. Y.; Dang, W. H.; Sun, X. H.; An, M.; Ni, Y. H.; Mao, J. J. Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance. Nano Res. 2023, 16, 9471–9479.

    Article  ADS  CAS  Google Scholar 

  20. Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Zhu, M.; Ni, Y. H. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 2022, 15, 7506–7532.

    Article  ADS  Google Scholar 

  21. Bi, J. X.; Wu, H. W.; Wang, L.; Pang, X. F.; Li, Y. Y.; Meng, Q. J.; Wang, L. A mass production paper-making method to prepare superior flexible electrodes and asymmetric supercapacitors with high volumetric capacitance. Electrochim. Acta 2021, 367, 137409.

    Article  CAS  Google Scholar 

  22. Lim, B. H.; Kim, J. M.; Nguyen, V. T.; Kim, H.; Park, C. W.; Lee, J. K.; Lee, C. H.; Yoo, J.; Min, B. K.; Kim, S. K. Functionalized methyl cellulose/LiClO4 composite as an environmentally friendly quasi-solid polymer electrolyte for solid-state electrochromic devices and cellulose-based supercapacitors. Mater. Today Energy 2023, 33, 101263.

    Article  CAS  Google Scholar 

  23. Luo, W. X.; Guo, N. N.; Wang, L. X.; Cao, Y. L.; Xu, M. J.; Jia, D. Z.; Feng, S. Z.; Gong, X. Y.; Zhang, S. From powders to freestanding electrodes: Assembly active particles into bacterial cellulose for high performance supercapacitors. Electrochim. Acta 2021, 387, 138560.

    Article  CAS  Google Scholar 

  24. Li, Z.; Liu, J.; Jiang, K. R.; Thundat, T. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 2016, 25, 161–169.

    Article  CAS  Google Scholar 

  25. Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Li, B. B.; Han, Q.; Li, D. P.; Ni, Y. H. Li-Na metal compounds inserted into porous natural wood as a bifunctional hybrid applied in supercapacitors and electrocatalysis. Int. J. Hydrogen Energy 2022, 47, 2389–2398.

    Article  CAS  Google Scholar 

  26. Xu, T.; Song, Q.; Liu, K.; Liu, H. Y.; Pan, J. J.; Liu, W.; Dai, L.; Zhang, M.; Wang, Y. X.; Si, C. L. et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 2023, 15, 98.

    Article  ADS  CAS  Google Scholar 

  27. Xiong, C. Y.; Li, M. R.; Nie, S. X.; Dang, W. H.; Zhao, W.; Dai, L.; Ni, Y. H. Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free wood@polyaniline supercapacitor material for renewable energy storage application. J. Power Sources 2020, 471, 228448.

    Article  CAS  Google Scholar 

  28. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Xiong, C. Y.; Yang, Q.; Dang, W. H.; Zhou, Q. S.; Jiang, X.; Sun, X. H.; Wang, Z. Q.; An, M.; Ni, Y. H. A multifunctional paper-based supercapacitor with excellent temperature adaptability, plasticity, tensile strength, self-healing, and high thermoelectric effects. J. Mater. Chem. A 2023, 11, 4769–4779.

    Article  CAS  Google Scholar 

  30. Wu, H. W.; Bi, J. X.; Li, Y. Y.; Wang, L.; Pang, X. F.; Xiong, C. Y.; Li, Z. J. Low-cost and low-density carbonized facial tissue supported uniform NiCo2S4 nanotubes for high capacity flexible solid-state supercapacitors. J. Materiomics 2021, 7, 166–176.

    Article  Google Scholar 

  31. Huang, H.; Abbas, S. C.; Deng, Q. D.; Ni, Y. H.; Cao, S. L.; Ma, X. J. An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers. J. Power Sources 2021, 498, 229886.

    Article  CAS  Google Scholar 

  32. Rabani, I.; Yoo, J.; Kim, H. S.; Lam, D. V.; Hussain, S.; Karuppasamy, K.; Seo, Y. S. Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale 2021, 13, 355–370.

    Article  CAS  PubMed  Google Scholar 

  33. Edberg, J.; Brooke, R.; Granberg, H.; Engquist, I.; Berggren, M. Improving the performance of paper supercapacitors using redox molecules from plants. Adv. Sustainable Syst. 2019, 3, 1900050.

    Article  Google Scholar 

  34. Qiang, H.; He, W.; Guo, F. Y.; Cao, J. Z.; Wang, R.; Guo, Z. H. Layer-by-layer self-assembled TEMPO-oxidized cellulose nanofiber/reduced graphene oxide/polypyrrole films for self-supporting flexible supercapacitor electrodes. ACS Appl. Nano Mater. 2022, 5, 6305–6315.

    Article  CAS  Google Scholar 

  35. Xiong, C. Y.; Wang, T. X.; Zhou, L. F.; Zhang, Y. K.; Dai, L.; Zhou, Q. S.; Ni, Y. H. Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding. Chem. Eng. J. 2023, 472, 144958.

    Article  CAS  Google Scholar 

  36. Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Duan, C.; Zhang, Z.; Zhou, Q. S.; Xiong, Q.; Zhao, M. J.; Wang, B.; Ni, Y. H. Multifunctional conductive material based on intelligent porous paper used in conjunction with a vitrimer for electromagnetic shielding, sensing, joule heating, and antibacterial properties. ACS Appl. Mater. Interfaces 2023, 15, 33763–33773.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

    Article  CAS  Google Scholar 

  38. Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.

  39. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    Article  CAS  Google Scholar 

  40. Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, E. H.; Pang, K.; Chen, Y. R.; Liu, S. P.; Liu, X. T.; Xu, Z.; Liu, Y. J.; Gao, C. Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 2023, 66, 1106–1113.

    Article  CAS  Google Scholar 

  42. Chen, Y.; Zhang, H. B.; Yang, Y. B.; Wang, M.; Cao, A. Y.; Yu, Z. Z. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 447–455.

    Article  CAS  Google Scholar 

  43. Shen, Z. M.; Feng, J. C. Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustainable Chem. Eng. 2019, 7, 6259–6266.

    Article  CAS  Google Scholar 

  44. Zheng, T.; Sabet, S. M.; Pilla, S. Polydopamine coating improves electromagnetic interference shielding of delignified wood-derived carbon scaffold. J. Mater. Sci. 2021, 56, 10915–10925.

    Article  ADS  CAS  Google Scholar 

  45. Zhao, S. M.; Yan, Y. H.; Gao, A. L.; Zhao, S.; Cui, J.; Zhang, G. F. Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 26723–26732.

    Article  CAS  PubMed  Google Scholar 

  46. Li, Y. X.; Yan, S. Y.; Zhang, Z. Y.; Liao, Y. J.; Rong, H. W.; Zhao, R. Z.; Qin, G. W. Wood- derived porous carbon/iron oxide nanoparticle composites for enhanced electromagnetic interference shielding. ACS Appl. Nano Mater. 2022, 5, 8537–8545.

    Article  CAS  Google Scholar 

  47. Zhou, M.; Wang, J. W.; Zhao, Y.; Wang, G. H.; Gu, W. H.; Ji, G. B. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 2021, 183, 515–524.

    Article  CAS  Google Scholar 

  48. Tian, S.; Zhou, L.; Liang, Z. T.; Yang, Y.; Wang, Y. R.; Qiang, X. F.; Huang, S. L.; Li, H. J.; Feng, S.; Qian, Z. H. et al. 2.5 D carbon/carbon composites modified by in situ grown hafnium carbide nanowires for enhanced electromagnetic shielding properties and oxidation resistance. Carbon 2020, 161, 331–340.

    Article  CAS  Google Scholar 

  49. Xiong, C. Y.; Li, B. B.; Liu, H. G.; Zhao, W.; Duan, C.; Wu, H. W.; Ni, Y. H. A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. J. Mater. Chem. A 2020, 8, 10898–10908.

    Article  CAS  Google Scholar 

  50. Zhao, W.; Liang, Z. H.; Feng, Z. H.; Xue, B. L.; Xiong, C. Y.; Duan, C.; Ni, Y. H. New kind of lignin/polyhydroxyurethane composite: Green synthesis, smart properties, promising applications, and good reprocessability and recyclability. ACS Appl. Mater. Interfaces 2021, 13, 28938–28948.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22078184 and 22378249), the China Postdoctoral Science Foundation (No. 2019M653853XB), and the Natural Science Advance Research Foundation of Shaanxi University of Science and Technology (No. 2018QNBJ-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyin Xiong.

Electronic Supplementary Material

Supplementary material, approximately 9.20 MB.

12274_2023_6145_MOESM2_ESM.pdf

Multi-layer hierarchical cellulose nanofibers/carbon nanotubes/vinasse activated carbon composite materials for supercapacitors and electromagnetic interference shielding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Xiong, C., Zhang, Y. et al. Multi-layer hierarchical cellulose nanofibers/carbon nanotubes/vinasse activated carbon composite materials for supercapacitors and electromagnetic interference shielding. Nano Res. 17, 904–912 (2024). https://doi.org/10.1007/s12274-023-6145-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6145-5

Keywords

Navigation